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Abstract 

 
In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential 
elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact 
spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed 
in close cooperation with the EPOXI project which has responsibility for the spacecraft. During 
DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were 
automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle 
origination, transmission, acquisition, dynamic route computation, congestion control, 
prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft 
and on the ground, over a period of 27 days.  All transmitted bundles were successfully received, 
without corruption.  All transmitted bundles were successfully received, without corruption.  The 
DINET experiment demonstrated DTN readiness for operational use in space missions. 
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1. Executive Summary 
In October and November of 2008, the Jet Propulsion Laboratory under contract to NASA, 
installed and tested essential elements (Bundle Protocol [1] and the Licklider Transmission 
Protocol [2]) of Disruption Tolerant Networking (DTN) technology on the Deep Impact 
spacecraft and on nine other computers at JPL. (Note that the terms disruption-tolerant 
networking and delay-tolerant networking are used interchangeably in network communications 
research.)  This experiment, called Deep Impact Network Experiment (DINET), was performed 
in close cooperation with the EPOXI project which has responsibility for the spacecraft. (EPOXI 
is a combination of the names for the two extended mission components: the exosolar planet 
observations, called Extrasolar Planet Observations and Characterization (Epoch), and the flyby 
of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI).) At the time, the 
spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During 
DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were 
automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle 
origination, transmission, acquisition, dynamic route computation, congestion control, 
prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft 
and on the ground, over a period of 27 days.  All transmitted bundles were successfully received, 
without corruption, despite several transient unanticipated lapses in service at Deep Space 
Network (DSN) stations during tracking passes. 

DINET can be appreciated through two complementary perspectives. The first is technical 
significance. Prior to the experiment, the DINET team defined four validation metrics, each of 
which was achieved during the experiment. The technical significance of DINET relies on the 
quantitatively defensible and tangible results. In summary, the Bundle and Licklider 
Transmission protocol elements of DTN were rigorously proven to work, as expected, in the 
disruptive environment of an interplanetary mission.  

The second perspective takes a broader, longer view, concentrating on the strategic significance 
of DINET. It addresses the broader questions of the importance of the experiment’s 
achievements, in both current and future timescales. The experiment’s successful demonstration 
of the priority-aware relay aspect of DTN offers significant promise for better utilization of 
existing bandwidth and improved end-user satisfaction. A significant strategic result with both 
immediate and future consequences is a reduction in the reluctance within the space-flight 
operations community to host networking technology with a high (if not complete) degree of 
autonomy.  Indeed, the EPOXI spacecraft team itself had to be convinced that the DINET 
software and operations plan posed no serious threat to the safety of their spacecraft.  They later 
became advocates of DINET’s inherent safety.   

DINET showed the ability of a space network to exchange data between its constituent nodes 
with Internet-like automation and the resultant low operations labor costs.  As networks grow in 
complexity, the time and effort needed to manually schedule and coordinate link activity quickly 
becomes unmanageable; DTN allows space networks to scale without such constraints.  In 
addition, the ability to automatically route information between space vehicles in local proximity 
without incurring the potentially long one-way light time delays and Earth-based decision cycles 
of human-managed communications offers the possibility of new types of coordinated science 
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that qualitatively differ from current capabilities.  DTN can help enable cooperative, reactive 
science functionality for remote spacecraft networks. 

2. Introduction 
The Deep Impact Network Experiment (DINET) was a technology validation experiment of 
JPL’s implementation of Delay-Tolerant Networking (DTN) protocols. The DINET development 
produced a version of JPL’s implementation of Delay-Tolerant Networking protocols in flight 
and ground software that is now at technology readiness level (TRL) 8 (Table 1).  The DINET 
software (SW) is of sufficient quality that future flight projects can easily use it at low risk. 
DINET was implemented on the Deep Impact spacecraft and was closely coordinated with the 
EPOXI project. DINET operations were performed during the EPOXI spacecraft team “stand 
down” after Extrasolar Planet Observation and Characterization (EPOCH) operations and before 
the start of development for DIXI operations (i.e., during October and November 2008). DINET 
developments and operations were on a non-interference basis with EPOXI to the maximum 
extent possible. DINET was sponsored by NASA Office of Space Operations / Space 
Communications and Navigation (OSO/SCAN) via JPL DSN office Space Networking and 
Mission Automation. The total cost of DINET was $1.4M, which included support for the 
EPOXI spacecraft team and their contractor Ball Aerospace and Technology Corporation.  

Table 1  Technology Readiness Levels and DINET Events 

TRL 
level 

Definition DINET Event 

4 Component and/or breadboard validation 
in laboratory environment  

Achieved via a long period of testing on personal 
machines and then in the JPL Protocol Test Lab, 
through December of 2005. 

5 Component and/or breadboard validation 
in relevant environment  

Achieved during end-to-end ION traffic in the  
tracking, telemetry, command (TTC) test envi-
ronment, using TTC V31.1. April 16. 

6 System/subsystem model or prototype 
demonstration in a relevant environment 
(ground or space)  

Achieved at the conclusion of DINET system test 
Sept. 26, 2008, the "relevant environment" in this 
case being the EPOXI test bed environment. 

7 System prototype demonstration in a 
space environment 

Achieved at the conclusion of DINET operations 
November 13, 2008. 

8 Actual system completed and "flight 
qualified" through test and demonstration 
(ground or space)  

Achieved at the conclusion of DINET operations 
November 13, 2008. 

9 Actual system "flight proven" through 
successful mission operations 

  

 

3. Validation Objectives and Experiment Design 

3.1. Validation Objectives  
Flight validate the key features of the DTN protocols, by measuring DTN performance against 
stated metrics:  
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• Path Utilization Rate  

• Delivery Acceleration Ratio 

• ION Node Storage Utilization  

• Multipath Advantage.  

These metrics are described in detail in section 3.1.1. 

Compare to performance predictions made prior to flight test. Measure and report on the 
following:  

• Environment Envelope (Table 2) 

• Resource Envelope (Table 2) of the end to end system  

• Protocol Envelope (Table 3) used in the experiment, since adjusting these can 
affect the results.  

Describe mission benefits of using DTN to the degree possible with this mission topology 

Compare DTN performance to typical state-of-practice approaches 
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Table 2  DINET Environmental and Resource Envelopes 

 

EOC = Experiment Operations Center, ION = Interplanetary Overlay Network, SCU-B = 
Spacecraft Control Unit B 
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Table 3  DTN Protocol Envelope 

 
CBHE = compressed bundle header encoding; PTL = (JPL) Protocol Technology Lab; TCP/IP = transmission 
control protocol/internet protocol; 

 

3.1.1. Terms of Validation 
Let XYZ denote the transmission opportunity from node X to node Y on DINET pass or 
configuration Z.  The duration of XYZ in seconds, denoted by DXYZ, is the end time of XYZ minus 
the start time of XYZ.  The data rate of XYZ in bytes per second is denoted by CXYZ.  The raw 
capacity of XYZ, denoted by KXYZ, is equal to DXYZ * CXYZ.  (Note that this is ideal capacity; the 
actual capacity of the link will be the ideal capacity reduced by actual signal noise on XYZ.  
Moreover, transient outages in transmission—as were experienced during four of the eight 
DINET transmission opportunities—necessarily reduce the total capacity of an opportunity.) 

DINET operated in two configurations, a and b; the former does not induce data loss while the 
latter induces loss by randomly discarding 1/32, or 3.125%, of received Licklider Transmission 
Protocol (LTP) segments.  The total data return capacity S72a from the EPOXI spacecraft (node 
7) to the Earth subnet (node 2) while DINET is in configuration a is ∑K72Z for Z = 1 4.  The 
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total data return capacity S72b from the EPOXI spacecraft (node 7) to the Earth subnet (node 2) 
while DINET is in configuration b  is ∑K72Z for Z = 5 8. 

The total data return capacity SM7a from the two Mars subnets (nodes 3 and 5) to the EPOXI 
spacecraft (node 7) while DINET is in configuration a is ∑KM7Z for Z = 1 4.  The total data 
return capacity SM7b from the two Mars subnets (nodes 3 and 5) to the DI spacecraft (node 7) 
while DINET is in configuration b is ∑KM7Z for Z = 5 8. 

The EPOXI spacecraft is the bottleneck in the flow of data from the Mars subnets to the Earth 
subnet: the total science data return capacity of DINET in configuration a, SM2a, is either the 
capacity of the transmission opportunities from the Mars subnets to EPOXI or the capacity of the 
transmission opportunities from EPOXI to the Earth subnet, whichever is less.  That is,   
SM2a = SM7a ┴ S72a and SM2b = SM7b ┴ S72b. 

The volume of priority-0 science data that is received at the Earth subnet over the entire course 
of DINET while in configuration a is denoted by R0a.  Similarly, the volume of priority-1 and  
priority-2 science data received at the Earth subnet over the entire course of DINET while in 
configuration a is denoted by R1a and R2a.  The raw volume of science data received at the Earth 
subnet over the entire course of DINET in configuration a, RTa, is the sum of these:  
RTa = R0a + R1a + R2a.  Similarly, RTb = R0b + R1b + R2b. 

The urgency-weighted volume of science data received at the Earth subnet over the entire course 
of DINET in configuration a, WTa, is the weighted sum: WTa = R0a + (2 * R1a) + (4 * R2a).  
Similarly, WTb = R0b + (2 * R1b) + (4 * R2b). 

The reference volume of priority-0 science data received at the Earth subnet while DINET is in 
configuration a, denoted by Q0a, is computed as RTa multiplied by the proportion of all image 
bundles that were published with priority 0 during this phase of the experiment.  (This is the 
proportion of RTa that we would expect to be priority-0 data, that is, the expected value of R0a if 
there were no reordering of data transmissions in the network due to priority.)  Similarly,  
Q1a = .60 * RTa and Q2a = .25 * RTa, and the same relationships can be expressed for the 
configuration-b phase of the experiment as well. 

The urgency-weighted reference volume of science data received at the Earth subnet while 
DINET is in configuration a, VTa, is the weighted sum: VTa = (.5 * Q0a) + Q1a + (2.0 * Q2a).  
Similarly, VTb = (.5 * Q0b) + Q1b + (2.0 * Q2b). 

The size of the Interplanetary Overlay Network (ION) data store at each node X, IX, is a DINET 
configuration parameter.  The size of the traffic storage allocation AX at each node X is computed 
by AX = .6 * IX. 

The total unassigned space NXZ at each node X for pass Z was reported by each node at least 
once on each day during which there was a tracking pass. 

The net path capacity PXYa for any single path from node X to node Y while DINET is in 
configuration a is the smallest value of ∑KijZ for Z = 1 4 among all links (i, j) in that path; PXYb 
is similarly defined for configuration b.  
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3.1.2. Metric 1 – Path Utilization Rate (U) 
Path utilization rate for DINET in configuration a is given by Ua = RTa / SM2a.  It measures the 
effectiveness of automatic forwarding, custody transfer, and delay-tolerant retransmission. 

Validation criteria: 

• Ua > 90%.  (DTN uses both high-rate and low-rate links efficiently.) 

• Ub > 90%.  (DTN remains efficient despite an increase in the rate of data loss.) 

3.1.3. Metric 2 – Delivery Acceleration Ratio (G) 
The delivery acceleration ratio for configuration a is given by Ga = WTa / VTa.  It measures the 
effectiveness of the priority system. 

Validation criteria: 

• Ga > 1.05  (Prioritization accelerates the delivery of urgent data.) 

• Gb > 1.1  (The advantage of prioritization increases with the rate of data loss.) 

3.1.4. Metric 3 – ION Node Storage Utilization 
Retention of a stable margin of unassigned space at each node measures the effectiveness of 
congestion control. 

Validation criteria: 

• The total number of bundles for which custody is refused anywhere in the 
network for the reason “depleted storage”, throughout each configuration, is 
always zero.  (We never run out of storage anywhere.) 

• NX7 = NX6 for all values of X.  (Storage utilization stabilizes over the course of 
network operations.) 

3.1.5. Metric 4 – Multipath Advantage 
The multipath advantage MXY for traffic from X to Y during DINET operations is computed as 
∑PXY for all paths from X to Y, divided by the largest single PXY among all paths from X to Y, 
minus 1.  Where there is only a single possible path between X and Y, multipath advantage is 
zero; where there are multiple possible paths between X and Y with net path capacity greater than 
zero, multipath advantage increases with the aggregate of those net path capacities.  Multipath 
advantage therefore measures the effectiveness of dynamic routing. 

Validation criteria: 

The multipath advantage for traffic from node 20 to node 8 is greater than 20%.  
(Dynamic routing among multiple possible paths increases the total network capacity 
from Phobos to Earth.) 
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3.2. Experiment Design  

3.2.1. System Level Design 
The basic topology of DINET is shown in Figure 1 (i.e., two surface assets, a relay orbiter, and 
Earth). The surface assets are designated Mars and Phobos, and the Deep Impact (DI) spacecraft 
fills the role of the relay orbiter.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 DINET Topology 

Figure 2 shows how this topology was implemented during the experiment. The ION software 
with the DTN protocols was resident in each of the eleven circles, i.e. network nodes. All the 
nodes, except for the Deep Impact spacecraft [node 7], were physically located in the JPL Deep 
Space Operations Team (DSOT) area in building 264 or in the Protocol Test Laboratory (PTL) in 
room 238-401. 

The 4-week period of DINET operations was divided into two configurations (a and b) of four 
tracking passes each. Configuration a had no injection of artificial data loss. During 
configuration b, 3.125% of all LTP segments were randomly discarded upon reception at the DI 

 
Earth 

 
Mars 

 
Phobos 

 
Orbiter 
Relay 

(surface asset) (surface asset) 

(DI s/c acts as orbiter) 
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spacecraft and at each of the three DSOT nodes. On the fourth tracking pass of each segment, the 
contact between Phobos and EPOXI was omitted.  A brief “cross-link” contact between Phobos 
and Mars was scheduled for a time shortly before the 4th tracking pass of each experiment, 
providing an alternate path for data from Phobos.  Four paths (topology experiments) were 
navigated using the setup shown in Figure 2. Table 4 summarizes the two configurations, the 
four topology experiments, and their relation to the eight DSN passes. Figures 3 through 6 and 
Table 5 present the paths through the network for the topology experiments. 

Table 4 DINET Experiment Summary  

 

 

Table 5 DINET Topology Experiments 

Topology 
Experiment 

Network Path 

1 Send images from nodes 12 to node 8 via nodes 6, 3, 7 , 2, 4.  Also send images 
from nodes 20 to node 8 via nodes 10, 5, 7, 2, 4. 

2 Send Load/Go directive loads from node 16 to node 12 via nodes 4, 2, 7, 3, 6.  
Also from 16 to 20 via 4, 2, 7, 5, 10 

3 Omit a contact between 7 and 5 and repeat experiment 1 & 2, forcing images 
from 20 to travel via 10, 6, 3, 7, 2, 4 and forcing directive loads to 20 to travel 
via 4, 2, 7, 3, 6, 10. 
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Figure 2 DINET Topology as Physically Implemented 

Send images from nodes 12 to node 8 via nodes 6, 3, 7 (the Deep Impact spacecraft), 2, 4.  Also send images from nodes 20 to node 8 via nodes 10, 5, 7 (the 
Deep Impact spacecraft), 2, 4. BRS = Bundle Relay Service; LTP = Licklider Transmission Protocol; UDP = user datagram protocol  
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Figure 3 Topology Experiment 1 

Send images from nodes 12 to node 8 via nodes 6, 3, 7 (the Deep Impact spacecraft), 2, 4.  Also send images from nodes 20 to node 8 via nodes 10, 5, 7 (the 
Deep Impact spacecraft), 2, 4. 
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Figure 4Topology Experiment 2 

Send Load/Go directive loads from node 16 to node 12 via nodes 4, 2, 7, 3, 6.  Also from 16 to 20 via 4, 2, 7, 5, 10 
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Figure 5 Topology Experiment 3 
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Figure 6  Topology Experiment 4 
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3.2.2. Flight Software 
Most of the objectives of the DINET experiment are addressed by the execution of JPL’s 
Interplanetary Overlay Network (ION) implementation of the DTN protocols. 

The DTN architecture is much like the architecture of the Internet, except that it is one layer 
higher in the familiar International Organization for Standardization (ISO) protocol “stack”.  The 
DTN analog to the internet protocol (IP), called “bundle protocol” (BP), is designed to function 
as an “overlay” network protocol that interconnects “internets” – including both Internet-
structured networks and also data paths that utilize only space communication links as defined by 
the Consultative Committee for Space Data Systems (CCSDS) – in much the same way that IP 
interconnects “subnets” such as those built on Ethernet, SONET, etc.  The DTN analog to 
transmission control protocol (TCP) is the Licklider Transmission Protocol (LTP), an automatic 
system for the retransmission of BP data lost in transit.  The ION implementation of BP/LTP is 
designed to work well within the constraints of the spacecraft flight software environment, 
emphasizing safety and efficiency.  See Figure 7 for an overview of ION operations architecture. 

Application

bp_send() bp_receive()

ipnfw

ltpclo ltpcli

traffic database

ltp_send() ltpmeter

<LSO> <LSI>

contact graph

forwarding
queue

xmits,
nodes,
origins

plans,
rules,

groups

routing table 

transmission
queue

service data units
(outbound block) 

LTP
segments

LTP segments
(inbound block>

delivery
queue

 
Figure 7 ION General Processing Flow 

AMS = Asynchronous Messaging Service (a publish & subscribe protocol that sits on top of ION); LSI = link 
service input (tasks); LSO = link service output (tasks); AMS =  

A few notes on this main line data flow: 
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 For simplicity, the data flow depicted here is a “loopback” flow in which a single BP 
“node” is shown sending data to itself (a useful configuration for test purposes). In order 
to depict typical operations over a network we would need two instances of this node 
diagram, such that the <LSO> task of one node is shown sending data to the <LSI> task 
of the other and vice versa.  

 A BP application or application service (such as Remote AMS) that has access to the 
local BP node – for our purposes, the “sender” – invokes the bp_send function to send a 
unit of application data to a remote counterpart.  The destination of the application data 
unit is expressed as a BP endpoint ID (EID).  The application data unit is encapsulated in 
a bundle and is queued for forwarding. 

 The forwarder task identified by the “scheme” portion of the bundle’s destination EID 
removes the bundle from the forwarding queue and computes a route to the destination 
EID.  The first node on the route, to which the local node is able to transmit data directly 
via some underlying “convergence layer” (CL) protocol, is termed the “proximate node” 
for the computed route.  The forwarder appends the bundle to one of the transmission 
queues for the CL-protocol-specific interface to the proximate node, termed an outduct.  
Each outduct is serviced by some CL-specific output task that communicates with the 
proximate node – in this case, the LTP output task ltpclo.  (Other CL protocols supported 
by ION include TCP and user datagram protocol (UDP).) 

 The output task for LTP transmission to the selected proximate node removes the bundle 
from the transmission queue and invokes the ltp_send function to append it to a block 
that is being assembled for transmission to the proximate node.  (Because LTP 
acknowledgment traffic is issued on a per-block basis, we can limit the amount of 
acknowledgment traffic on the network by aggregating multiple bundles into a single 
block rather than transmitting each bundle in its own block.) 

 The ltpmeter task for the selected proximate node divides the aggregated block into 
multiple segments and enqueues them for transmission by underlying link-layer 
transmission software, such as an implementation of the CCSDS Advanced Orbiting 
Systems (AOS) protocol.   

 Underlying link-layer software at the sending node transmits the segments to its 
counterpart at the proximate node (the receiver), where they are used to reassemble the 
transmission block. 

 The receiving node’s input task for LTP reception extracts the bundles from the 
reassembled block and dispatches them.  Each bundle whose final destination is some 
other node is queued for forwarding, just like bundles created by local applications, while 
each bundle whose final destination is the local node is queued for delivery to whatever 
application “opens” the BP endpoint identified by the bundle’s final destination endpoint 
ID. 

 The destination application or application service at the receiving node opens the 
appropriate BP endpoint and invokes the bp_receive function to remove the bundle 
from the associated delivery queue and extract the original application data unit, which it 
can then process. 
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However, the DTN protocols are at relatively high layers of the communication protocol “stack,” 
and they rely on the support of communication software at lower layers to effect, for example, 
signal radiation and acquisition.  Existing EPOXI operational software provides this support but 
is not designed to interact with the ION software, and vice versa. 

An additional increment of DINET software, called Deep Impact Adaptation Software (DIAS), is 
therefore needed to act as an intermediary between ION and the operational software currently 
residing on the spacecraft and in the DI ground data system.  The DIAS system enables the 
exchange of data between ION modules and DI operational software modules, thereby indirectly 
enabling the flow of DINET data, without requiring significant modification of DI flight or 
ground software. 

The fundamental design decision underlying the DIAS design is simple.  To minimize 
modification of DI operational software, we merely replace DI’s implementation of the CCSDS 
File Delivery Protocol (CFDP) with a CFDP simulator, called “PX”.  DI operational software, 
both in flight and on the ground, continues to invoke the CFDP protocol data unit (PDU) 
transmission and reception functions exactly as it does now, but the PDUs that are transmitted 
and received are neither produced nor consumed by CFDP protocol engines.  Instead those PDUs 
are artificially produced and consumed by the PX system, which simply encapsulates segments 
of DTN data in bogus CFDP file data protocol data units (FPDUs).  In effect, we “tunnel” DTN 
traffic through underlying CFDP. 

More specifically: 

1. DINET test application data objects (e.g., images) are encapsulated in DTN bundle 
protocol (BP) data units for routing through the network.  Outbound bundles are 
aggregated into blocks to minimize protocol overhead, and the Licklider Transmission 
Protocol (LTP) implementation then splits each block into segments for reliable 
transmission. 

2. The PX system, acting as LTP’s underlying “link service”, encapsulates each LTP 
segment in a CFDP file data segment PDU.  All such FPDUs have the same transaction 
ID, the same file data offset value (zero), and indeed the same values in all header fields 
except PDU length, which varies with the sizes of the encapsulated segments.  
Impersonating CFDP, the PX system passes these artificial FPDUs to DI operational 
software for transmission. 

3. DI operational software accepts the PX-generated FPDUs and transmits them in the same 
manner that authentic FPDUs are transmitted.  When the FPDUs are received by 
counterpart DI operational software, they are presented to a receiving PX state machine 
in exactly the same way that authentic received FPDUs are presented to the CFDP entity. 

4. The receiving PX system extracts the encapsulated LTP segments from the FPDUs and 
passes them to LTP. 

5. The LTP implementation reconstitutes blocks from the segments and extracts bundles 
from the reconstructed blocks.  The BP implementation then forwards or delivers the 
received bundles. 

This procedure is symmetrical: bundles sent both to and from the spacecraft are processed in the 
same way.  In particular, note that the BP and LTP implementations used on-board the spacecraft 
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and in all ground computers (both DSOT and PTL) are the exact same code.  All instances of 
these protocols are identical and interchangeable, except that they must be compiled differently 
for the various platforms on which they are executed: VxWorks on the flight computer; Solaris 
on the DSOT machines; and Linux on the PTL machines.  

Figure 8 depicts the current operational Deep Impact CFDP architecture . 
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Figure 8 Current CFDP Architecture 

HCD = hardware command decoder; pxisi = CCSDS File Delivery Protocol simulator input; 
pxiso = (output of same); TDS = Telemetry Delivery System; TIS = Telemetry Delivery System; 
TLM = telemetry 
 
Figure 9 depicts the DINET software architecture including both PX and ION. 
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Figure 9 CFDP with Integrated PX and ION 

 

3.2.3. Ground Software  
The goal of the DINET ground software design is reducing cost by minimizing change.  The 
DSN ground software component remains the same with exception of: 

1. Create three new instances of File Delivery Manager (FDM) server that interface with 
ION. This interface is identical to the existing CCSDS File Delivery Protocol (CFDP) 
interface. These new FDM servers simply forward PDUs between ION layer and the 
telemetry/command subsystems by converting from telemetry packets to ION PDUs and 
from ION PDUs to command link transmission units (CLTUs). No CFDP uplink or 
downlink is performed by these FDM servers. 

2. ION software used by the Ground system is identical to the software running on the 
EPOXI spacecraft with the exception of some differences in implementation of the DIAS 
layer. 

3. The command Subsystem communicates with the three new File Delivery Manager 
(FDM) servers, one at a time, in addition to the existing FDM/CFDP server. The ACE 
(the person who sends commands to the spacecraft) switches the connection between the 
Command subsystem and the appropriate FDM server based on a fixed schedule to allow 
uplink dataflow. 

4. In test environment, similar update is made to forward data between Flight software and 
three instances of FDM/ION server. There is no manual switching between uplink proxy 
and the three FDM servers as in real operation. 

5. A new event processor task is created to forward event verification record (EVR) 
telemetry packets from the spacecraft to the Experiment Operation Center (EOC). These 
EVRs are used for tracking ION software status aboard EPOXI. 
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6. ION debug information from the Data Operation Center is captured and periodically 
forwarded to EOC through email. 

 

 
Figure 10 CFDP Operational Downlink Dataflow 
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Figure 11 CFDP Operational Uplink Dataflow 

BVE = Block V Exciter 

 

Figure 12 CFDP Testbed Dataflow 

FSW = flight software 
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3.2.4. Experiment Operations Center 
The Experimental Operations Center (EOC) is the critical point where all experiment monitoring 
and controlling occurred. It resided in the Protocol Technology Lab (PTL) in JPL’s 
telecommunications laboratory facility.  Since the PTL was conceived as a testbed area for space 
networking, the functional design revolves about projects such as DINET.  The lab area includes 
moveable racks containing about 50 computers, three large liquid crystal display (LCD) wall-
mounted displays, ample network access, and mission-control voice loop connectivity as 
illustrated in Figure 13. 

 
 

   
Figure 13 EOC Hardware (red boxes) in the PTL Work Area 

 
Standard PTL hardware consists of Intel-based PCs running Fedora Linux, including DINET.  
All DINET computers ran 64-bit Linux except the administrative node, which ran 32-bit Linux 
(for plug-in compatibility).   

The EOC was constructed around a set of requirements for DINET functionality.  These 
requirements included: 

Functions: 
 Host three ION relay nodes and three endpoint nodes and requisite software. 

 Provide Experiment Monitoring & Control (EM&C) without interfering with the 
operation of ION relay or endpoint nodes. 
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 Host a network time protocol (NTP) server to synchronize time across all EOC machines 
to within 1 second of Greenwich mean time (GMT) time. 

Software Interfaces: 
 Establish and maintain connectivity with DSOT from RELAY nodes for ION bundle 

transactions 

 Establish and maintain connectivity with DSOT for receiving ION FSW log message 
EVR data from Deep Impact telemetry and other DSOT TCP/IP-relayed status 
information. 

 Establish and maintain connectivity with DSOT for radiation status and voice 
coordination with DI operations using the Voice Operational Communications Assembly 
(VOCA) 

Data Management: 
 Provide data archiving of all experiment data 

 Provide access to experiment operations records for on-line non-real-time query and 
retrieval 

 Provide redundant experiment data archival capabilities to avoid loss of experiment data 
in the event of the failure of the primary data archive node. 

User Interfaces: 
 Host experiment operations display in real time for monitoring and controlling the 

experiment (see Figure 14). 

  Provide receipt of and display of DSOT data that indicate the link status of the link to DI 
and indications when a bundle is radiated.  
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Figure 14 EOC Functional Architecture 

EMC or EM&C = Experiment Monitoring & Control ; L&G = load and go (table); SM = status message 

Each EOC machine in the PTL was connected to two EOC local area networks (LANs) – one 
private LAN for node management, network storage, and terminal traffic; and another routable 
LAN for experiment data and out-of-band experiment diagnostic information. The routable LAN 
was also accessible by DSOT machines making outbound client connections to server relay 
nodes in the EOC.  This was accomplished using a secure authentication-based convergence 
layer protocol adapter of ION called Bundle Relay Service (BRS)—a TCP-enabled system 
allowing bundle-layer traversal through stateful firewalls such as the one protecting the DSOT 
nodes.  One additional connection was established outside the bundle layer with the 
administrative node by a process running on DSOT extracting DINET EVRs and sending them 
to the administrative node via TCP.  A Global Positioning System (GPS)-based stratum-1 NTP 
server on the experiment LAN kept all nodes time-synched.   

The operating systems used were the 64- and 32-bit version of Fedora 9, with no special 
modifications beyond DINET software (ION, GUI, publish/subscribe applications).  The DINET 
applications were developed to meet the project’s top-level requirements, as previously stated.  
Their software location is shown in Figure 15, and functional flow is shown in Figures 16 and 
17. 
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Figure 15 EOC Network Diagram 

 

The EOC component of the PTL consisted of three ION-enabled relay nodes (4, 6, 10), three 
endpoint nodes (8, 12, 20), and the requisite software. In addition, the EOC contained a separate 
Administrative Node (16) running a GUI interface and console windows, central to the display of 
sending, receiving, and monitoring realtime data. Data archiving, as well as secondary redundant 
data archival of all experiment data and access to the experiment operations records for on-line 
non-realtime (NRT) query and retrieval, was also conducted through the Administrative node.  
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The lab provided for connectivity with DSOT from relay nodes for ION bundle transactions and 
for receiving ION FSW log message EVR data from Deep Impact telemetry and other DSOT 
TCP/IP-relayed status information.  Outbound flight LAN firewall exceptions on specific ports 
were requested and put into place well before operations to allow outbound TCP/IP connections 
to EOC nodes from DSOT. 

 
Figure 16 EOC Software Architecture - Software Overview 

RAMS = Remote Asynchronous Message Service; SPOF = (has been changed to Bundle Release Service (BRS); 
UDP =; user datagram protocol  
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Figure 17 DINET Physical Network 

stot = simple TDS output tool 
 
EOC Publish & Subscribe and AMS 
 
EOC Publish and EOC Subscribe tasks communicate through the Asynchronous Messaging 
Service (AMS). AMS is a publish & subscribe protocol that sits on top of ION and is part of the 
ION package (see Figures 18–20). AMS is a data system communications architecture under 
which the modules of mission systems may be designed as if they were to operate in isolation, 
each one producing and consuming mission information without explicit awareness of which 
other modules are currently operating.  

An AMS node does not need to wait for the arrival of any message (such as a reply to the 
message it sent) before continuing performance of its functions.  AMS might best be 
characterized as a messaging “middleware” protocol.  As such, it relies on the capabilities of 
underlying Transport-layer protocols to accomplish the actual copying of a message from the 
memory of the sending node to the memory of the receiving node.   

EOC EPOXI 
Spacecraft & DSOT 

End System Nodes 
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Figure 18 Publisher / Subscriber Software System 

NFS = Network File System  

 
EOC Publish and Subscribe Model: 
 

 AMS uses a topic-based Publish & Subscribe model 
– Messages are published to "topics" or named logical channels; or in AMS’s case 

“subject numbers” 
– Subscribers in a topic-based system will receive all messages published to the 

topics (subject number) to which they subscribe 
  EOC Publish task on the Mars node will publish files in messages to AMS subject 

number 15 
  EOC Publish task on the Phobos node will publish files in messages to AMS subject 

number 15 
  EOS Subscribe on the Earth node will subscribe for the messages with AMS subject 

number 15 
  AMS will deliver subject number 15 messages from Mars and Phobos nodes EOC 

Publish tasks to the Earth node EOC Subscribe task without any further EOC 
intervention 
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Figure 19 Publisher Control Flow 

M& C = monitor and control 

 

 
 

Figure 20  Subscriber Control Flow 

EOC Administrative Node  
The Administrative Node is a designated separate computer from the three relay computers and 
three endpoint ION node computers in the EOC. It was used to process and display received 
Protocol Diagnostic Messages (including messages announcing the arrival of Bundle Status 
Reports) as well as data archival and retrieval functions for normal operations. The 
Administrative Node provided for EOC displays and user interfaces to operate the DINET 
experiment in addition to running a GUI application that enabled the DINET operator to monitor 
and control the experiment.  It also displayed a dynamic topology chart of the DTN in real time.  
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Figure 21 EOC to Administrative Node 

 

 
Figure 22  Administrative Node Functionality 

 
GUI Application and Interface   
The EOC bundle network is configured and monitored with the EOC GUI application (Figure 
23).  The application uses a combination of AJAX, html, Java, and the Netbeans 5.5 IDE to 
create a user interface (Figure 24) for visibility and interaction with the DTN. It primarily shows 
a realtime view of the topology of all nodes running, and all messages being received at each 
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node as they are stored in the database. A non-realtime message query GUI (Figure 25) augments 
this interface to enable the user to query the database for any log messages received at any time 
throughout the current (or any previous) experiment based on any database field. 

 
Figure 23 GUI Functionality 
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Figure 24 Monitor and Control GUI
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Figure 25 Non-Realtime Query GUI 

SQL Database 
The primary source of data archival used for the experiment was a MySQL database, which was 
hosted on the Administrative node. Any bundle status reports or log messages were received by 
the Administrative node via TCP/IP, parsed, and entered in the database according to the 
database record creation concept shown in Figure 26. 

The backup data archival and redundant storage system used Wireshark to monitor and store data 
arriving at the Administrative Node, and any Wireshark logs were stored on a separate computer 
to guard against catastrophic failure of the Administrative Node or its SQL database. 



 

 34

 
Figure 26 Element Function and Modules 

Personnel 
The EOC was staffed by one full-time network engineer to perform system administration and 
experiment operation.   Four more EOC-specific staff members served as developers and testers 
on a part-time basis.  This is illustrated in Figure 27. 
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Figure 27 Personnel Overview 

 
Operations Performance 
Operations in the EOC included monitoring of data flow during experiment, data collection and 
distribution after experiment passes, time management of ION software aboard EPOXI, and 
generation of small data bundles for transfer through the DTN (in addition to automated image 
publishing).  The EOC software GUI display and data store allowed excellent real-time visibility 
into network behavior, allowing rapid response to and analysis of experiment events.  This 
success can be attributed in part to well-defined requirements guiding the EOC development 
team through design, assembly, and test phases.  The selection of widely available open-source 
tools and support for code development on PTL systems also contributed to success, specifically 
under budgetary and temporal constraints. 
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4. Experiment Results 

4.1. Findings 

4.1.1. Metric 1 – Path Utilization Rate (U) 
Validation criteria: 

 Ua > 90%.  (DTN uses both high-rate and low-rate links efficiently.) 

 Ub > 90%.  (DTN remains efficient despite an increase in the rate of data loss.) 
Analysis of the DINET experiment log indicates that Ua was 76.2% and Ub was 72.4%.   

Note, however, that passes 2 and 8 were underutilized due to insufficiency of offered uplink data 
as discussed later, so their path utilization rates do not accurately reflect protocol efficiency.  
Additionally, note that about 20% of available uplink capacity was consumed by link service 
overhead, mainly telecommand coding.  When only passes 1, 3, 4, 5, 6, and 7 are considered and 
all non-DTN overhead is subtracted from available transmission capacity, Ua and Ub are 97.4% 
and 92.5% respectively.  With these provisos, both validation criteria were satisfied. 

Note that the increased data loss rate in configuration b was found to correlate to a reduced path 
utilization rate as expected. 

4.1.2. Metric 2 – Delivery Acceleration Ratio (G) 
Validation criteria: 

 Ga > 1.05  (Prioritization accelerates the delivery of urgent data.) 

 Gb > 1.1  (The advantage of prioritization increases with the rate of data loss.) 
Analysis of the DINET experiment log indicates that Ga was 1.10 and Gb was 1.12. Both 
validation criteria were satisfied 

4.1.3. Metric 3 – ION Node Storage Utilization 
Validation criteria: 

 The total number of bundles for which custody is refused anywhere in the network for the 
reason Depleted Storage, throughout each configuration, is always zero.  (We never run 
out of storage anywhere.) 

 NX7 = NX6 for all values of X.  (Storage utilization stabilizes over the course of network 
operations.) 

Analysis of the DINET experiment log indicates that both validation criteria were satisfied, 
except that NX7 was 156,816 bytes less than NX6 for node 10 (only).  N10 had remained constant 
from passes 4 through pass 6.  We suspect that some new functionality requiring additional 
storage space—possibly not related to the DTN protocols—was initially exercised on node 10 
after pass 6 and prior to pass 7; analysis is continuing. 
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4.1.4. Metric 4 – Multipath Advantage 
Validation criteria: 

The multipath advantage for traffic from node 20 to node 8 is greater than 20%.  
(Dynamic routing among multiple possible paths increases the total network capacity 
from Phobos to Earth.) 

The computed multipath advantage for traffic from node 20 to node 8 through the entire DINET 
experiment is 27%.  Thus, the validation criterion was satisfied.  Note, however, that errors in the 
implementation of dynamic routing prevented the expression of this advantage in improvements 
in delivery acceleration ratio.  This metric will be revisited in future DINET experiments. 

4.2. Trace Bundles 
At least one trace bundle was received by each end node (8, 12, 20) from every other end node, 
demonstrating the viability of traffic flow in all directions through the network, including direct 
exchange between science end nodes without Earth in the loop. 

Fourteen trace bundles were never received, due to power failure, software restart, and/or various 
errors in dynamic routing as discussed below. 

4.3. Anomalies  

4.3.1. DTN-Related Investigations 
Apparent image arrival out of priority order in pass 2  

October 22, 2008 
Bundles queued for transmission are forwarded in strict priority order.  Why, then, was the first 
image received at the Earth node during pass 2 a priority-0 bundle, followed by priority-1 
bundles? 

During the third contact of pass 1, the EPOXI node sent all bundles it had received to Earth and 
then pended, waiting from another bundle to send.  During the first contact of pass 2, the Phobos 
node completed transmission of a priority-0 bundle that it had begun transmitting at the end of 
the first contact of pass 1.  When this transmission completed, the newly received priority-0 
bundle was immediately grabbed for transmission to Earth by the EPOXI node, but there was no 
contact with Earth at that time, so transmission pended.  Meanwhile, the Phobos node proceeded 
to send another 11 priority-0 bundles to EPOXI, and then the Mars node sent 7 priority-0 images 
and 14 priority-1 images to EPOXI during the second contact.  When the third contact of pass 2 
began, the EPOXI node completed transmission of the pended priority-0 image and then 
proceeded to send its other buffered images, starting with the priority-1 images received from the 
Mars node. 

Underutilization of link in pass 2  

October 22, 2008 
Path utilization for pass 2 is sharply lower than for passes 1, 3, and 4.  Why? 
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In short, there was too little data buffered at the Phobos node to fully consume the uplink 
opportunity for pass 2. 

By the start of pass 2, the Phobos node had received a total of 1,129,974 bytes of image data.  
Many other images had been published at the Phobos science end node but had been buffered at 
node 10 pending the cross-link opportunity to node 6, which would enable this additional traffic 
to take advantage of the long contact from Mars to EPOXI during pass 4 when there would be no 
Phobos/EPOXI link.  Only two days had elapsed since the end of pass 1, not enough time for 
newly published data from node 20 to fill node 5’s buffers for transmission to EPOXI. 

Node 5 (Phobos) transmitted 781,764 bytes to EPOXI during pass 1, leaving 411,210 bytes.  It 
received an additional image of 49,622 bytes during its pass-2 opportunity (the cross-link buffer 
from 10 to 6 was fully subscribed by this time), so it transmitted a total of 460,832 bytes to 
EPOXI during pass 2, leaving no locally buffered data.  This constituted a contact under-
utilization of about 300,000 bytes. 

Loss of advantage provided by alternative route (cross-link between nodes 6 and 10)   

Throughout data production 
What happened to the Phobos images, many of priority 1, that were buffered for transmission on 
the cross-link?  Why weren’t they transmitted by the Mars node during pass 4 in preference to 
the priority-0 Mars images? 

This is the result of a software anomaly, an error in the route computation algorithm as exercised 
at node 6.  During the cross-link contact, node 6 received all of these images and forwarded them 
to node 3, but node 3 refused custody: it determined that they could not be forwarded through 
EPOXI because its contact with EPOXI was already fully allocated to Mars images of priority-0 
and priority-1.  The problem is that the “backlog” to consider when making this sort of decision 
ought to be the backlog of all bundles of the same priority of the bundle to be routed or higher 
priority, rather than all bundles regardless of priority.  The priority-1 images from Phobos should 
have “jumped the queue” ahead of the priority-0 Mars images, causing routes for those lower-
priority bundles to be recomputed as necessary. 

Consequently, these Phobos images remained stranded on node 6, where they eventually were 
destroyed due to time-to-live (TTL) expiration.  

Bundle expiration on EPOXI  

Several times throughout operations 
Why did bundles expire while buffered at the EPOXI node? 

It was not possible to convey them to the Earth node prior to expiration of their TTL intervals.  
Note that all of the expired bundles were of priority 0.  All priority-1 bundles received at EPOXI 
were forwarded to the Earth node, but downlink contacts to Earth were highly constricted during 
passes 2 and 6.  Insufficient contact time to clear out the buffers at EPOXI resulted in retention 
of the lower-priority bundles for transmission during a future contact, but TTL expired before 
that contact occurred.   
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Normally we would expect contact graph routing (CGR)-based route computation to anticipate 
the constrained contact opportunities and simply reject the low-priority bundles when sourced, 
due to “no known route”.  However, several contact opportunities were abbreviated for various 
reasons, and retransmission also consumed some contact time.  The result was delayed 
forwarding of the low-priority bundles. 

For example, a priority-0 bundle of size 39888 was sourced by the Phobos science node at 18:10 
on 23 October, between passes 2 and 3.  It was eligible for enqueuing on the cross-link from 
node 10 to node 6, because the subsequent pass-4 link from EPOXI to Earth would have 
delivered it prior to TTL expiration, but it was instead enqueued at node 5 because the cross-link 
was already fully subscribed.  However, because its priority was low it was not fully transmitted 
to EPOXI during the first contact of pass 3; moreover, completion of its transmission session 
could not occur during pass 4 because that pass had no Phobos/EPOXI contact.  So the last 
segments of this bundle arrived at EPOXI only during the first contact of pass 5—early in the 
morning of 4 November—by which time the bundle’s 10-day time to live had expired.  The 
bundle was reassembled from its constituent segments but then immediately destroyed. 

Underutilization of link in pass 8  

November 13, 2008 

Command Modulation Generator (CMG) failure during pass 8 somehow caused the Mars node 
to hang, so that bundle flow did not resume even when the CMG was restarted.  In an attempt to 
get the node running again we inadvertently restarted ION on the node when we really wanted 
only to restart the FDM process; this resulted in the loss of all data buffered at node 3 for 
transmission to EPOXI.  We were able to reload the Mars node with images published at the 
Phobos science end node and routed to Mars over a newly created cross-link contact, but this 
recovery activity consumed about 1¼  hours of the Mars-EPOXI contact interval; during that 
time, no bundles were presented for transmission to EPOXI.  This constituted a contact under-
utilization of about 1,125,000 bytes. 

Custody refusal at node 5 due to redundant reception  

October 27, November 11 

Why was bundle custody refused on two occasions for the reason “redundant reception”? 

On two occasions, a “bptrace” text bundle sent from node 8 to node 12 via node 7 was refused by 
node 5 for the reason “redundant reception” following prior refusal due to “no known route” (as 
described in “Aggregate capacity overflow” below).  This was due to a bug in custody refusal 
that resulted in node 5 believing that it already had taken custody of the bundle.  

Unexplained “watch” characters  

Throughout operations 

What causes watch characters indicating “TTL expiration” to be printed at times when no time-
to-live expirations are noted in statistics reports? 

Unknown.  This question remains under investigation. 

Aggregate capacity overflow  

Notably October 22 and November 6 
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Why can some bundles not be routed properly through the crosslink? 

CGR erroneously failed to compute a route to a neighbor connected by a long-duration contact, 
because the aggregate capacity of this contact was so large that it overflowed the 32-bit integer in 
which it was stored.  This caused anomalous routing activity from nodes 8 to 12.  Bundles sent 
from 8 were routed to 5 by 7 in order to take advantage of a future crosslink between 6-12; these 
were always rejected, though some were able to be rerouted to 3 by 7. 

This bug is listed as JIRA item DINET-107 and a more robust mechanism for computing the 
aggregate capacity of a contact is being developed. 

4.3.2. Software Anomalies 
Spontaneous statistics reports  

Throughout operations 

Statistics reports were produced by the DINET nodes running on Linux hosts at times other than 
the times of contact initiation and termination.  This was due to a race condition in the bpclock 
daemon, which has already been corrected. 

Unreachability of node 16  

October 18, 2008  
Bundle status reports produced by the EPOXI node and destined for node 16 were never 
transmitted because CGR was unable to compute a route from node 7 to node 16.  This problem 
remains under investigation. 

Backlog calculation must be priority-sensitive  

Throughout operations 

See “Loss of advantage provided by alternative route” above.  A fix for this bug is being 
developed. 

EVR forwarding connection through Data Control firewall times out and is lost   

Several times through operations 

The ground software utility that extracts EPOXI’s DINET status messages from EVR packets 
and sends them through the Flight LAN firewall to the Experiment Operations Center attempts to 
use an open connection to EOC for this purpose.  However, the Flight LAN firewall 
automatically closes this connection when it has been inactive for an hour, so the first EVR 
status message received after an hour of inactivity fails transmission to EOC and is lost.  
Fortunately, EVRs could still be retrieved immediately at the Mission Support Area (MSA) using 
Packet Show (telemetry viewing system) (PKTShow) and can also be retrieved afterwards by 
querying the PKTShow. In the future, the utility needs to reopen the connection to EOC for each 
EVR. 

Incomplete bundle destruction on custody refusal 

See “Custody refusal at node 5 due to redundant reception” above.  This bug has already been 
corrected.   
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4.3.3. Hardware Anomalies 
CMG overload   

October 20, November 3, November 11, November 13 

A heavy volume of command data transmission, such as DINET’s Mars/EPOXI and 
Phobos/EPOXI contacts, can cause the CMG module at various DSN stations to overheat and 
shut down; switching to the backup CMG takes some time, resulting in some loss of contact 
opportunity.  This problem is not local to a single station, and it remains under investigation. 

4.3.4. Environmental Anomalies 
Power failure  

November 13, 2008 

A JPL-wide power failure on November 12 caused all DINET nodes in the EOC to be 
terminated.  This resulted in the loss of all data enqueued at node 10 for transmission to node 6 
via cross-link, but (see “Loss of advantage provided by alternative route” above) this data would 
almost certainly have been refused by node 3 anyway.  The material effect on the experiment 
was minimal. 

4.3.5. Procedural Anomalies 
Restarting FDM on node 3 restarted DTN as well  

November 13, 2008 

See “Underutilization of link in pass 8” above.  According to the contingency documentation, the 
decision was made to restart the FDM server, but inability of readily available procedures or 
expertise to restart only the FDM system on node 3 caused a restart of not only the server but 
also the local DINET software. This had two unfortunate effects: it resulted in underutilization of 
the Mars/EPOXI contact, as described earlier; and it increased the difficulty of diagnosing the 
suspension of node operations.  Procedures and/or scripts providing this detailed operational 
flexibility will be helpful for future DINET experiments. 
 

Slow hand-off between DSN stations in Pass I 

October 20, 2008 
During the first pass, a scheduled handover from DSS 26 to 45 was performed slower than 
expected causing loss of data due to bundle expiration. 

Incomplete FDM swapping in DSOT during FSW upload 
October 18, 2008 
The ACE swapped to the correct FDM during the FSW upload without selecting CFDP as the 
data transfer mode; rather it was left in Spacecraft Command Message File (SCMF) mode. 
Fortunately, this had no impact on the FSW Upload pass, and this anomaly did not reoccur 
during the remainder of operations. Future ground software should have automated switching 
between FDMs and also between data transfer modes. 
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4.4. Significance of Results and Comparison to State of the Art 

4.4.1. Current Deep Space Communications Methodology 
Data retrieval from a single spacecraft 
The normal method of retrieving science and telemetry data from spacecraft is for the spacecraft 
team to manually schedule each contact with the DSN, decide which data are to be transmitted 
from the spacecraft, and then to send a command sequence built by the sequence team to 
command the spacecraft to transmit the selected data to the DSN at the selected time. 

If, due to atmospheric conditions or other phenomena, telemetry frames are lost, a human-in-the-
loop process is initiated whereby the scientists and engineers examine the data gaps and decide 
what data are important to retransmit; a new set of commands is then generated and sent to the 
spacecraft to recover the missing data. In some missions, to facilitate this procedure, thumbnail 
images are generated and sent along with the full sized images in the hope that if full size images 
are lost or corrupted, the thumbnails will help the scientists to decide whether or not to have 
these images retransmitted. 

This process is labor intensive, as it involves the spacecraft team, the sequence team and the 
science team; and it can take several days to decide what should be retransmitted. Meanwhile, 
valuable on-board storage is unavailable since the spacecraft has to retain the images until 
confirmation that they have been successfully received on Earth or have been deemed 
unnecessary. 

In addition, the use of thumbnails which facilitates data management and retransmission 
decisions requires additional on-board processing and uses bandwidth that could otherwise be 
used for the raw data. 

In one current Mars mission, the desire for more downlink time resulted in the lowering of the 
horizon mask at the DSN station from 20 degrees to 15 degrees. While the X-band data from 20 
degrees above the horizon and up was relatively error-free, the data recovered from 15 degrees to 
20 degrees above the horizon was prone to errors, and many manual retransmission requests had 
to be generated. The sequence team ended up devising a non-standard method of automating the 
development of retransmission command sequences to facilitate the necessary retransmissions. 

All of these labor-intensive operations can be eliminated by the use of the DTN suite with the 
LTP protocol providing for automatic retransmission of bad telemetry frames. The DTN data-
priority scheme can automate the priorities of data sent on board, with repetitive realtime 
engineering telemetry sent on a best-efforts basis, for instance, while science data are always 
retransmitted as necessary. 

The trade space of manually-commanded retransmission versus automated retransmission 
includes the additional bandwidth needed for retransmission of potentially useless data (and the 
thumbnail method of providing clues as to what is missing), the manual labor needed to decide 
what needs to be retransmitted, and the management of storage and processing power on board 
the spacecraft. 

Preliminary calculations of the extra bandwidth needed for retransmission are the subject of 
show that the small percentage of extra bandwidth needed to retransmit potentially useless 
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science data (e.g., missing portions of an image showing parts of the sky) is a very small price to 
pay for the savings in work effort by the various teams and the benefit of being able to release 
storage assets immediately when using the built-in reliability features of LTP. 

This percentage is also more than offset if the use of LTP eliminates the need for the generation 
and transmission of “thumbnail” pictures of the full size image as is done on the Mars 
Reconnaissance Orbiter (MRO). 

The error rates on X-band links are relatively small. However when using Ka-band, automatic 
retransmission will be much more important since Ka is more susceptible to weather-induced 
errors.  Depending on weather at the various DSN stations, as much as 20% of the downlinked 
data could be lost or corrupted, and the workload to try to manually manage that would be large. 
The DTN protocol stack is ideal for automating the management of data flow and will be an 
enabling technology for the future widespread use of Ka-band. 

Good top-down mission system engineering will be necessary, as the impact of automatic 
retransmission and its interaction with prioritization must be carefully considered. For example, 
in an encounter mission, bandwidth used for retransmitting portions of older images may have 
adverse effects on returning closer-in images unless the newer images are given higher priority. 
In the case of a rover with robotic tools, the opposite may be true; complete images of the exact 
position of a target of interest are needed before plans on how to deploy drills or other sample 
tools can be made, so any retransmission of these images must be at higher priority than other 
traffic. 

Multimission Data Relay Operations  
Currently, data from surface assets (e.g., Mars Exploration Rover (MER) or Phoenix) are sent 
from the surface to an orbiter (under the command and control of one spacecraft/science team), 
and subsequently relayed back to Earth by the orbiter under the control of another spacecraft 
team, which may even be from another space agency (e.g., data relay via Mars Express). 

The successful accomplishment of a simple two-hop relay scenario requires twice the manual 
work described in the previous one-hop scenario, plus coordination between teams. This method 
of operations simply doesn’t scale well; if relay operations are being conducted through multiple 
spacecraft owned by multiple teams, the coordination logistics can become unmanageable very 
quickly. 

With an approach of using standardized DTN techniques (that is to say, the use of a standard set 
of protocols per  Internet Engineering Task Force  (IETF) or CCSDS specifications to insure 
interoperability), the coordination problem distills down to communications schedules as defined 
by pre-determined orbital geometry and DSN scheduling.  

DTN will be an enabling technology for previously impractical applications such as the 
automated and reliable relaying of data from sensor networks on the surface of other planets. 

4.4.2. DTN Compared to Current Military Communications State of the Art 
The use of Internet technology in the military is vital and significant effort has been expended to 
make Internet protocols work well over satellite relays. Field commanders rely on satellite links 
and networking back to the Pentagon, and laptops are ubiquitous in the field. 
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The problem with this reliance on use of the Internet is at the edges of the battlefield where 
connectivity isn't always continuous. The Internet protocols currently in use can manage loss due 
to corruption (using CCSDS Spacecraft Communication Protocol Standards–Transport Protocol 
(SCPS-TP) for instance, which is in use in military satellite communications  and link 
asymmetries, but they cannot handle the frequent disruption of end-to-end link connectivity.   

The Defense Advanced Research Projects Administration (DARPA) has had a DTN program in 
place for a number of years, and this program is moving rapidly towards fielding DTN 
capabilities for these edge networks. The Wireless Network After Next (WNAN) program is 
building inexpensive DTN radio nodes that will allow the use of DTN to ensure data get into the 
hands of soldiers in the field in highly fluid tactical environments where continuous radio 
connectivity to the wider military networks cannot be insured. This program is on a fast-track, as 
both the United States Army and the United States Marine Corps are anxious to field DTN and 
improve battlefield communications. 

4.4.3. Comparison with Terrestrial Internet 
The main point of comparison with terrestrial internet technology hinges upon the need for 
continuous end-to-end connectivity. With TCP/IP, a complete path through multiple routers must 
exist between the two computers for a connection to be established and for the reliable 
transmission of data. If, during the data exchange transaction, a link from one router to another 
goes down, or if one of the routers becomes too congested with traffic to handle the transaction, 
the packets are dropped and the transaction is effectively terminated. Reestablishment of the 
transaction must wait until once again there is a continuous end-to-end path available. 

This effect and the advantage of DTN are best illustrated by relating a recent experiment by the 
University of California Los Angeles (UCLA) Center for Embedded Networked Sensors. A 
linear array of seismic sensors were placed in a local mountain range, spaced about 1 km apart, 
and connection between each sensor was via 802.11 wireless. 

Using TCP/IP, in order to retrieve the data from the farthest sensors, all radio links had to be up 
and operating. As may be imagined, this was a spotty proposition; 802.11 links often went down 
because of atmospheric effects, trees blowing, etc., and as a result, the data from the farthest 
sensors was hard to recover. 

UCLA took the DTN protocol and installed it in their sensors, so the data could simply be 
relayed from node to node when the links were up, storing the data at each link until the next hop 
became available. As a result, all data could be recovered. UCLA subsequently used the DTN-
derived techniques in the MesoAmerican Subduction Experiment, which involves an array of 
sensors across Mexico for hundreds of kilometers. [3]  

DTN store-and-forward techniques are also being used in a number of other terrestrial 
applications, such as the University of California (UC) Berkeley Tier Store project, which uses 
DTN to provide Internet services to remote villages in India where there is no connectivity. A 
similar effort is in use by the Saami-Net project in Sweden, where DTN is used to bring email 
and other services out to the nomadic Saami following their reindeer herds. [4]  

In both these cases, the principle is that a portable DTN node on a bus or snowmobile takes all 
transaction requests from local users; when the portable device is driven (or ridden) to an area of 
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regular internet connectivity, the transactions are completed, and the results (such as received 
email) are stored in the DTN node to await the return trip to the remote users. 

With the increased popularity of wireless applications , it is expected that DTN will play a large 
role in the terrestrial internet.  To this end, our development of DTN over the last 10 years has 
been conducted in conjunction with the Internet Research Task Force (IRTF) , which established 
the DTN Research Group. The IRTF is an international team of researchers that has collaborated 
on the development and standardization of DTN.  While our current use on DINET is tailored 
specifically for spacecraft communications, it is completely interoperable with the 
Delay/Disruption Tolerant Networking Research Group (Reference Implementation 2) (DTNRG 
DTN2) public implementation and follows the same Experimental Request for Comments (RFC) 
standard [1], so future use of DTN may extend from terrestrial DTN applications to our space 
applications.  

4.4.4. Comparison with SSTC-UK-DMC Satellite Test 
In September 2008, a test of some features of the DTN Bundle Protocol (BP) was performed by 
the NASA Glenn Research Center (GRC) using a United Kingdom satellite, UK-DMC, in low 
Earth orbit at an altitude of about 100 miles (160 km). In this experiment, an implementation of 
the bundle origination, proactive fragmentation, and transmission procedures of BP was installed 
on the UK satellite and was used on two occasions to transfer an image—split into two fragments 
Glenn Research Center from the satellite to a DTN node at Surrey, UK, over a convergence-layer 
protocol stack based on the specification for the Saratoga file transfer protocol; the Surrey 
ground station node automatically forwarded the fragments to a third DTN node at GRC. On one 
occasion, the image suffered data corruption in transit. The GRC convergence-layer protocols 
were able to detect this corruption but not correct it.  On the other occasion, the image was 
successfully received at GRC. 

In October and November of 2008, the NASA Jet Propulsion Laboratory (JPL) installed and 
tested fully conformant implementations of both BP and LTP on EPOXI, a NASA spacecraft in 
interplanetary space at a distance of 10–15 million miles (16–24 million kilometers) from Earth, 
and on nine other computers at JPL.  In this experiment, some 300 images were transmitted from 
the JPL nodes to the spacecraft and then automatically forwarded from the spacecraft back to the 
JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route 
computation, congestion control, prioritization, custody transfer, and automatic retransmission 
procedures, both on the spacecraft and on the ground, over a period of 27 days.  All transmitted 
bundles were successfully received, without corruption, despite several transient unanticipated 
lapses in service at DSN stations during tracking passes. 

The GRC UK-DMC test was a valuable initial proof of the concept that DTN bundles may be 
constructed on-board a spacecraft and used to transmit data. 

JPL's EPOXI test demonstrates that JPL’s comprehensive DTN software suite is ready for 
operational use in flight missions. 

4.4.5. Significance of Results 
The significance of the Deep Impact Network Experiment can be appreciated through two 
complementary perspectives.  The first focuses on the technical significance, with an emphasis 
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on the quantitatively defensible and tangible results that can be drawn from the four-week 
experiment.  It answers the narrow question of what DINET has proved.  The second perspective 
takes a longer view, concentrating on the strategic significance of DINET.  It answers the 
broader question of the importance of the experiment’s achievements, in both current and future 
timescales. 

Technical Significance 
DINET proved that Delay-Tolerant Networking can work in deep space.  During the four-week 
experiment, DTN was successfully demonstrated over a variety of conditions for a ten-node 
network topology including the EPOXI spacecraft.  The DTN protocols that governed the traffic 
management, data dissemination and routing functions of a network were exercised over a 
representative topology, with a realistic traffic pattern and characteristic application data.  
Software adaptations for EPOXI’s flight and ground systems were developed to allow the 
networking protocols to act within an end-to-end information system setting.  

It should be noted that the topology modeled a more complex network than today’s standard of 
Martian communications with a two-hop maximum.  Unlike current Mars practice, network 
functions were completely automated.  It is true that some planned and unplanned actions by 
DINET operations personnel were necessary at times to manage the experiment, but the 
network/data management functions themselves did not require intervention. 

All validation objectives of the experiment were met, accounting for the appearance of 
anomalies.  One class of anomaly, the unexpected loss of DSN transmission capability that 
occurred on several occasions during the experiment, demonstrated the robustness of the JPL 
implementation of DTN.  In those situations, the protocols automatically identified the missing 
data, and they coordinated and activated selected retransmissions, completely and rapidly 
recovering the data while imposing no extra operational burden.  In fact, all image data received 
through the network were compared at the bit level to the original data injected into the network 
and shown to be identical, indicating the total lack of data corruption. 

Strategic Significance  
DINET raised the technology readiness of DTN to its highest level thus far.  It clearly 
demonstrated a system in a space environment, and if it were only a prototype, such would 
qualify as TRL 7.  But a case can be made that DINET went beyond the prototype stage, as the 
networking protocols employed were those intended to be used universally.  While some needed 
improvements were identified during the experiment, the maturity, robust performance, and 
adherence to publicly available standards of the DTN software allow it to be used again on 
different missions with different topologies.  Such a situation argues for TRL 8.  While the 
managers of future missions may desire an additional cycle of code formalization and 
documentation for a higher level of supportability before committing to complete adoption, the 
DINET code is available for immediate use in its current form. 

The experiment, by chance, uncovered a limitation of the current DSN that has significance for 
Internet-like operation of space networking.  Historically, the downlink data volume from 
scientific space probes has dwarfed the uplink volume, as the tightly packaged command 
information has never approached the size of the resultant science measurements.  So the DSN 
never had to accommodate significant uplink volumes.  With DTN, large uplink volumes are a 
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possibility, and the DINET experiment attempted to send data to the EPOXI spacecraft in such 
high volume that the DSN’s CMG system failed several times from possible overheating.  Such 
an uplink limitation had not previously been noted.  It highlights the pre-Internet mindset that 
many legacy communication systems have physically manifested and currently operate under. 

The experiment’s successful demonstration of the priority-aware relay aspect of DTN offers 
significant promise for better network utilization of existing bandwidth and improved end-user 
satisfaction. 

A significant strategic result with both immediate and future consequences is a reduction in 
reluctance of the space flight operations community to host networking technology with a high 
(if not complete) degree of autonomy.  Indeed, the EPOXI spacecraft team itself had to be 
convinced that the DINET software and operations plan posed no serious threat to the safety of 
their spacecraft.  They later became advocates of DINET’s inherent safety.  Some benefits of 
DTN were also grasped by them as being desirable for science operations such as the EPOCH 
science investigations completed a few months prior to DINET. 

DINET showed the ability to of a space network to exchange data between its constituent nodes 
with Internet-like automation and the resultant low operations labor costs.  As networks grow in 
complexity, the time and effort needed to manually schedule and coordinate link activity quickly 
becomes unmanageable; DTN allows space networks to scale without such constraints.  In 
addition, the ability to route information automatically between space vehicles in local proximity 
without incurring the potentially long one-way light time delays and Earth-based decision cycles 
of human-managed communications offers the possibility of new types of coordinated science 
that qualitatively differ from current capabilities.  DTN should help enable cooperative, reactive 
science functionality for remote spacecraft networks. 

5. Lessons Learned 
While the development of ION took several years of work by JPL and its partners, the 
culmination of this effort in the form of DINET took less than a year.  The rapid progression of 
development, integration, testing, and execution provided ample experience in quickly readying 
a communications protocol for use in the space environment.  This experience in turn imparts 
numerous lessons on managing future DINET experiments and other small team technology 
development experiments. 

5.1. Information Management 
As unit testing proved successful and matured into system-level testing, information 
management became a vital tool to assure that all members of the team were consistent in their 
knowledge of testing progress, system components, and terminology. Moreover, consistent and 
consistently updated information management frames the basis of other lessons for future 
experiments. 

From the beginning, a communal information source (particularly a wiki) forms the basis of 
proper information management.  At the unit test level, those responsible for their system 
components should update their related wiki pages with test procedures and test results in general 
language. All emails referencing test progress should include links to the related wiki page. It is 
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crucial that updating the experiment wiki is a common task associated with formal and informal 
aspects of the experiment.  This provides ongoing context for testing progress.  Background 
documentation, including theoretical and previous work, should also be cached on related unit, or 
special, pages.  

As system testing starts, the systems engineers will have a deep understanding of each unit with 
the context provided by each unit’s wiki entries.  As system testing continues and new 
responsibilities form, it is essential to assign individual team members to maintain those 
responsibilities.  This way, no responsibility is left behind and a consistent voice is supporting 
each one. The ensuing understanding can then forge a competent and efficient testing plan with 
all unit specialists well-versed in related parts of the system.  Administratively, consistent and 
properly updated documentation aids in developing coherent reviews and reports to clients.   

Otherwise, the lack of proper information management may cause slow downs, halts, failed tests, 
and other complications that are difficult to mitigate once they appear.  If individuals fail to 
update their unit wiki, systems engineers will not necessarily have a clear understanding of how 
tests are performing or details associated with that unit leading to inefficient or downright 
impossible timelines. If a unit’s wiki page is incomplete or is not clear, test operators and 
systems engineers may be unable to successfully run tests that would otherwise be possible, 
slowing down the progress of the testing schedule. 

While the wiki had existed for DINET since the beginning, it was not fully utilized until system 
testing. This forced systems engineers to spend extra time in consulting each unit specialist in a 
time-consuming and potentially inconsistent way.  Moreover, information between units was 
exchanged occasionally through email and weekly meetings.  While DINET did not face any 
mission-endangering consequences from not having an early, widespread adaptation of the wiki, 
it is possible that it would have saved time through unambiguous communication. 

In general, information management through a wiki may seem trivially important, leading some 
team members to disregard it as a superfluous product of overzealous administrators, but it is a 
integral player in maintaining an effective development regiment. 

5.2. Requirement and Time Management 
Without proper requirement and time management the project cannot continue forward.  Once 
requirements have been developed and refined they can be assigned to tests that are responsible 
for meeting those requirements.  By mapping these associations, a critical path of testing will 
emerge that takes test dependencies into account.  This critical path will provide a logical order 
of testing that validates the most important requirements first.  This way, in the event of delays in 
testing process, superfluous tests can be dropped for a descoped testing regimen.  

In order to successfully manage both requirements and time during testing, there are several 
simple rules that should be followed.  First, the sooner unit tests are developed and the 
requirements are mapped, the sooner early system tests can be formulated and run.  DINET 
benefited from running early system tests to diagnose issues in interfacing various units.  While 
these issues were being resolved, other unit tests could be completed so that the testing regimen 
could continue unhampered.  Second, the testing schedule should be constantly updated to reflect 
completed and delayed tests.  Third, as system testing continues it is important to inspect mapped 
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requirements to verify that they are still relevant and assigned to the right tests.  By properly 
maintaining the requirements, none will be missed and the testing results can be more easily 
integrated into reviews. 

Not following these three rules, particularly through inconsistent updates of the requirement 
mapping and timeline, may lead to testing delays and inefficient utilization of testing staff. 

5.3. Configuration Management and Software 
The practice of configuration management (CM) plays a key role in all testing, and the absence 
of effective CM will undoubtedly lead to failed tests and a dramatically slower pace of testing. 

There are two key lessons regarding CM learned based on progression of DINET testing; first 
the centralization of sources of key files, second the shepherding of all file-updating 
responsibilities to as few people as possible.  Through the latter portions of the DINET 
experiment testing we were able to implement Subversion (SVN) file repository as a method to 
centralize the distribution of key files used in testing.  Many of the nodes in the network would 
undergo an SVN update prior to a test in order to make sure everyone was utilizing the same 
software and script versions.  This system can be improved by expanding it to all nodes on the 
system for all the software used in the experiment.  For instance the non-ION software used on 
the DSOT nodes for system testing was locally maintained by programmers and operators.  
Configuration management was done informally through email, causing occasional 
miscommunication when emails had not been sent or wrong emails were read.  By using a 
software repository system like SVN, testers will know exactly what version files they are using 
for each test, assuring uniformity throughout the network. 

The process of CM through maintaining a software repository can also be expedited by assigning 
people to be responsible for particular files. All updates by anyone on the team would be routed 
through the person responsible for that particular file so issues of redundant and multiple 
different files being used simultaneously will not happen. 

Lastly, the streamlining of the user interface for software plays an integral role in safe and error-
free operation. During system testing, personnel shortages forced the use of untrained operation 
at the simulated DSOT nodes. Because the software at the nodes was rather cumbersome, a few 
tests were scrubbed due to incorrect execution of number of scripts, which need to be run for the 
test.  Eventually, an overarching script was developed, which all but stopped the scrubbing of 
tests due to the aforementioned operator error.  During operations, a simple, scripted alarm clock 
was developed by the DINET team to provide warnings for operational events. This intuitive 
software kept operators aware during operations and may have avoided human error due to 
forgetfulness. 

5.4. Testing 
For all projects, testing is a trying time during which the project team needs to integrate all the 
different units of the project and to quickly respond to anomalies that present themselves. 

Above all, information management plays the most important role in system testing.  The reality 
of running a system test is that several people with limited communication between them, in 
different buildings, are trying to simultaneously accomplish different, mutually dependent 
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objectives through individual efforts—simply put, human errors are inevitable.  In order to 
minimize the errors, thorough procedures need to be written for each testing station or individual, 
and then these procedures must be distributed and read by all testers prior to testing.  This is a 
responsibility not only for the systems engineer who writes and distributes the documentation, 
but also for each tester as well. Moreover, procedures need to be followed at all stations for even 
the most informal of tests. After all, procedures that are not followed will result in inconclusive 
test results and poor practice during operations. This was particularly noticeable in DINET’s 
propagation of the time synchronization file which was sometimes haphazardly done in the 
testbed location (containing simulated DSOT and testbed nodes).  Numerous tests were scrubbed 
due to improper synchronization, causing approximately an hour of delay each time. As testing 
progresses and ad hoc procedures are developed, such as calling between stations and verifying 
file versions, these procedures should be integrated into documentation to formalize them for 
future reference and for debriefs of failed tests. 

The development of the testing schedule is just as important as information management in 
testing because it sets the pace for the entire project.  The DINET experiment had three different 
unit testing categories: ground support software (itself divided between software for DSOT and 
EOC), ION software, and spacecraft adaptation.  In order to streamline testing, unit tests were 
done in parallel as much as personnel and testing precondition constraints could allow.  This 
enabled early unit-unit interface tests to meet our testing philosophy of  

  “Test early. Test often.”   

This decision proved very successful in rapidly adapting the various units to the DINET system 
as a whole.  During this period, an overarching schedule was developed for system testing.  This 
schedule provided reasonable margin for tests to take unforeseen complications into account.  
Our system testing was rife with complications: changes in facility, intermittent availability of a 
working testbed, damage to critical system hardware due to construction workers not taking 
safety precautions, key personnel being on leave, and technical issues that arose from testing. 
Despite all these complications, DINET remained on schedule for the bulk of testing due to 
conservative scheduling.  While DINET operations occurred two weeks later than initially 
scheduled, it was safe within the two month operations window given by EPOXI staff. 

Several important lessons were learned through various types of tests run on DINET software. 
One such lesson we learned was the role of long-duration testing. For most of system testing we 
relied on 1.5-hour tests, which were unable to expose some flaws in our code.  The longer 
overnight tests uncovered a memory leak in the administrative node GUI at the EOC as well as 
routing issues in the network.  Had we not done long-duration testing prior to the software 
freeze, our operations would have produced significantly less data.  Another lesson emerged 
when we performed off-nominal testing on DINET.  While we included some off-nominal 
testing early, it was trivial in scale compared to what was scheduled toward the end of system 
testing. This second round of off-nominal system testing uncovered many bugs in software 
throughout the system requiring a iterative develop-on-the-fly and testing procedure that took 
longer than expected.  

Prior to operations, the DINET team engaged in an intensive Operational Readiness Test (ORT) 
period during which we ran through abridged operations twice as well as engaged in a series of 
post-ORT tests. The ORTs provided a very strong exercise for operations as they finalized 
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operational procedures but also gave the DINET team and other operators experience in dealing 
with anomalous events during operation.  The second round of testing in the ORT period gave 
the DINET team extra time to understand exactly how the network would behave during 
operations.  By observing this behavior, detecting anomalous network activity was a lot easier 
for operations. 

5.5. Team Morale 
Like any other team activity the upkeep of team morale plays a large role in its performance.  
While DINET did not experience any problems with morale, there were several decisions which 
helped maintain good performance. 

Primarily, a realistic outlook on milestones and requirements potentially saved the project money 
and team morale.  For example, while approaching our ORTs it became apparent that our pace of 
testing would either require multiple shifts for testing and development or else a schedule 
revision.  After consulting with EPOXI staff, the decision for a delay was made.  This choice 
saved the team both money and extra time, which might still not have produced the required 
progress for an on-time ORT.   

Second, jovial attitude among the team through the final portions of testing and operations was 
maintained by having an ample supply of pastries and espresso on hand at the EOC.  These were 
also shared with staff associated with the project in other stations, such as DSOT and the MSA.  
This simple addition helped keep spirits and energy up through long and late hours and certainly 
boosted performance. 

6. Future Work 
With the successful completion of the DINET experiment and raising the TRL of DTN to 8, we 
have begun to look forward to increase the functionality and the operability of the DTN 
protocols through further development and testing.  We intend to continue our work in the 
DINET II experiment, which will provide several enhancements of the DTN software and will 
also demonstrate DTN over a larger and more complex network topology. 

6.1. Work for DINET II 
The key areas of development and demonstration for DINET II: 

• Implementation of unacknowledged CFDP enabling large file transfers 

• Implementation of Bundle Security Protocol (BSP) 

• Demonstration of dynamic contact graph routing 

• Development of a EPOXI bootstrap function 

• Inclusion of additional nodes in the experimental network 

• Development of automated FDM switching 

• Fixing issues remaining from DINET I 
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• Implementation of extended priority system 

6.1.1. Implementation of Unacknowledged CFDP Enabling Large File 
Transfers 

The DINET I experiment was designed to be quickly adapted to the EPOXI infrastructure, which 
precluded the development of a CFDP implementation for DINET.  Instead, DINET used 
preexisting AMS, which limits bundle size to approximately 64 kb. While this was sufficient to 
prove the efficacy of DTN, it did not establish a viable method for transferring uncompressed 
science data from spacecraft.  For DINET II, CFDP has to be implemented as a part of the DTN 
stack. This will allow portability of CFDP across Portable Operating System Interface 
Application Programming Interface (POSIX API) supporting platforms and aid in technology 
infusion.  This effort to adapt CFDP will likely happen at JPL.  

6.1.2. Implementation of Bundle Security Protocol (BSP) 
In order to expand the application of DTN in the space environment, protocol security must be 
developed to provide protection from outside attacks when not using secure links.  Moreover, the 
inclusion of additional nodes in DINET II testing will require secure communications.  To this 
end, DINET II development will include Bundle Security Protocol (BSP),* which includes 
additional blocks in either a header or trailer to authenticate the sender of the bundle.  This will 
allow for secured communication across otherwise insecure media.  

6.1.3. Demonstration of Dynamic Contact Graph Management 
Throughout the DINET operations, the contact graph on the spacecraft was considered a single 
point of failure for the mission. We did not have enough time to developed a robust and 
operationally safe method to change the _ION initialization file (global.ionrc) during operation 
in the case of failure or to allow the establishment of another window for data transfer. During 
our final pass of the DINET experiment, changing of the contact graph was done within the 
EOC, but it has yet to become a standard practice.  Changes will be made during the course of 
DINET II that will enable dynamic revision of the contact graph for operations and future DTN 
experiments.  This will enable a network that is more capable of reacting to disruptions and using 
opportunistic contacts. 

6.1.4. Development of a DTN Bootstrap Function 
In order to provide a safe method of restoring connectivity in the case of a contact graph failure 
aboard EPOXI, the EPOXI team in conjunction with DINET will develop a bootstrap function 
that creates a short contact with the spacecraft to replace or restore the contact graph. 

6.1.5. Inclusion of Additional Nodes in the Experimental Network 
Following the success of DINET I, a logical step is to include more nodes in our network to 
increase network traffic and devise more experiments to test routing algorithms.  We are looking 
into using testbeds at other NASA facilities and a computer aboard the International Space 
Station (ISS) as potential nodes in addition to all the nodes which participated in DINET I. 

                                                 
* BSP is still a draft IETF standard.  It is currently available at http://www.ietf.org/internet-
drafts/draft-irtf-dtnrg-bundle-security-06.txt 
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6.1.6. Development of Automated FDM Switching 
In order to access EPOXI using the ground system software, file data management (FDM) 
switching needs to occur. Currently this is operated by DSOT during operations, but we intend to 
fully automate this based on the contact graph.  Automated FDM switching is vital to realistic 
operations in which data seamlessly flow and switching decisions are made without a human in 
the loop. 

6.1.7. Fixing Issues Remaining from DINET I 
There are several bugs that were discovered after the software freeze but before DINET I 
operations. While some of these bugs have been fixed or are in the process of being fixed, the 
remainder will be fixed early in DINET II testing. 

6.1.8. Implementation of Extended Priority System 
Throughout the course of DINET I operations and discussions with other DTN partners, it 
became clear that it would be logical to increase the number of priority levels that are available 
in ION.  This will provide greater usability for network clients and make sure that administrative 
traffic is able to go through the network without interference from other data. 

6.2. Work Beyond DINET II 
There are a few additional items not covered in the scope of DINET II that will be addressed in 
future development and experiments: 

• Native AMS on spacecraft 

• Network time protocols 

• On-board OWLT calculation integration 

6.2.1. Native AMS on Spacecraft 
The DINET I experiment utilized the EPOXI spacecraft as an internet router, sending bundles 
from one node to another. In a realistic DTN scenario, spacecraft will be data producers and will 
require AMS in order to send data to their subscribers.  This will require testing to adapt the 
current AMS software with EPOXI and possibly other spacecraft SCUs in the future. 

6.2.2. Network Time Protocols 
Successful networking across a delay tolerant network requires strict regulation of clocks that are 
accessed by the ION stack in order to manage bundles and communication during contact 
windows. Clock synchronization was done by receiving spacecraft clock/spacecraft event time 
(SCLK/SCET) files from the spacecraft and predicting clock drift through calculations.  This is 
not a viable strategy for realistic DTN applications in a large network.  Significant work will be 
required to develop robust network time protocols to synchronize clocks throughout a DTN 
network. 

6.2.3. On-Board OWLT Calculation Integration 
Due to the dynamic nature of interplanetary navigation, the global.ionrc as initially set will 
become increasingly inaccurate without changes taking the one-way-light-time (OWLT) into 
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account.  By utilizing the Spacecraft Planetary/satellite ephemeris and constants, Instruments, C 
Pointing Matrix, Event Info. (Kernels) / Navigation and Ancillary Information Facility 
(SPICE/NAIF) toolkit, OWLTs can be automatically calculated, both at ground nodes and on-
board the spacecraft, and integrated into the contact graph to enable efficient use of contact 
times.   

JPL’s EPOXI test demonstrated full end-to-end use of the DTN software suite on a deep space 
mission.  As such this test flight validated DTN for use on space missions. 
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9. Appendix A – Experiment Data 
This Appendix contains worksheets summarizing the performance of the DINET delay-tolerant network during its 27 days of operations. 

Table 6 presents a detailed analysis of the overhead cost of DTN transmission over command links (uplink).  Each layer of the protocol 
stack imposes some increment of overhead, typically in the form of protocol data unit “header” data.  The table illustrates the calculation of 
the total overhead imposed by Bundle Protocol, by LTP, by the “PX” shim that enabled DINET to “tunnel” through the pre-existing support 
for CFDP on EPOXI, and by the CCSDS Telecommand link-layer protocol.  Note that the total link bandwidth consumed by BP and LTP 
headers was at most 1% of available bandwidth, while the total link bandwidth consumed by the Telecommand protocol was on the order of 
20%. 

Table 7 details the total image transmission capacity of each contact opportunity from the simulated science nodes to the EPOXI spacecraft 
and from the spacecraft to the simulated mission operations center.  Known periods of outage are noted.  The “throttled” values in the table 
indicate the data rates to which DTN congestion control limited transmission based on the contact schedule; these rates were often, but not 
always, identical to the actual rates at which DSN and spacecraft radio frequency (RF) equipment was operating.  

Table 8 details the end-to-end image delivery performance of the network.  It indicates the volume of data actually received at EPOXI 
during each contact, the volume of data delivered to the simulated mission operations center on each pass, and the residual content of the 
data buffers on EPOXI at the end of each pass.  Link utilization is computed from these figures in the context of the computed network 
capacity values from Table 7.  Data volumes received at EPOXI and at “Earth” are shown for each of the three levels of priority supported 
by the Bundle Protocol standard.  This enables the worksheet additionally to show the computed delivery acceleration ratio on each pass. 

Table 9 is a calculation of the nominal multipath advantage provided by network as configured for this experiment, based again on the 
capacity figures from Table 7. 

Table 10 shows how buffer space from the ION storage pool is allocated to DTN protocol activity.  The bundle data storage allocation 
grows over time until a condition of peak utilization has been reached, at which point it stabilizes and residual storage margin is left 
untouched.  As noted in 4.1.3 above, the additional allocation from residual storage at node 10 on pass 7 is an anomaly that is still being 
investigated.  (Since the ION storage pool is used to support other activities in addition to the exercise of the DTN protocols, it is possible 
that this additional allocation is not attributable to DTN.)   
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Table 6. Uplink Overhead 
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Table 7  Network Capacity  

 



 

 58

Table 8  Experiment Data Delivered 
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Table 9   Multipath Advantage 
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Table 10. Storage Utilization 
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10. Appendix B – Acronyms 
 

ACE the person who sends commands to the spacecraft 
AMS Asynchronous Messaging Service (a publish & subscribe 

protocol that sits on top of ION) 
AOS Advanced Orbiting Systems 
ASM Asynchronous Messaging Service 
  
BER bit error rate 
bi bidirectional 
BP bundle protocol 
BRS Bundle Relay Service 
BSP bundle security protocol 
BVE Block V Exciter 
  
CBHE compressed bundle header encoding 
CCSDS  Consultative Committee for Space Data Systems  
CFDP CCSDS File Delivery Protocol  
CGR contact graph routing 
CL convergence layer 
CLTU  command link transmission unit 
CM Configuration Management 
CMD command 
CMG Command Modulation Generator 
CPU central processing unit 
  
DARPA  Defense Advanced Research Projects Administration 
DI Deep Impact 
DIAS Deep Impact Adaptation Software  
DINET Deep Impact Network Experiment 
DIXI Deep Impact Extended Investigation 
DSN Deep Space Network 
DSOT Data System Operations Team  
DSS Deep Space Station 
DTN Disruption Tolerant Networking  

(or Delay tolerant Networking; the terms are used 
interchangeably in the research community) 

DTNRG DTN2 Delay/Disruption Tolerant Networking Research Group 
(Reference Implementation 2)  

  
EID endpoint ID 
EOC Experiment Operation Center 
EMC, EM&C  Experiment Monitoring & Control 
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EPOCH Extrasolar Planet Observation and Characterization 
EPOXI EPOXI is a combination of the names for the two 

extended mission components: the exosolar planet 
observations, called Extrasolar Planet Observations and 
Characterization (EPOCH), and the flyby of comet 
Hartley 2, called the Deep Impact Extended Investigation 
(DIXI). 

EVR event verification record 
  
FDM  File Delivery Manager 
FPDU CFDP file data protocol data unit   
FRR File Received Report 
FSW flight software 
  
global.ionrc  ION initialization file 
GMT Greenwich mean time  
GPS Global Positioning System 
GRC Glenn Research Center  
GUI graphical user interface 
  
HCD hardware command decoder 
  
IETF Internet Engineering Task Force (technical body that 

standardizes Internet protocols) 
ION (JPL) Interplanetary Overlay Network (software suite on 

Deep Impact) 
IP internet protocol 
ISO  International Organization for Standardization 
ISS  International Space Station 
  
JIRA (bug, issue tracking, and project management system 

developed by Atlassian Software Systems) 
JPL Jet Propulsion Laboratory 
  
LAN local area networks 
LCD  liquid crystal display 
L&G, L/G load and go (table) 
LSI link service input  
LSO link service output  
LTP  Licklider Transmission Protocol 
  
M&C monitor and control 
MER Mars Exploration Rover 
MILSATCOM Military Satellite Communications 
MRO Mars Reconnaissance Orbiter  



 

 63

MSA Mission Support Area 
  
NASA National Aeronautics and Space Administration  
NFS Network File System 
nonbi nonbidirectional 
NRT non-realtime 
NTP network time protocol 
  
ORT Operational Readiness Test  
OSO/SCAN Office of Space Operations / Space Communications and 

Navigation  
OWLT one-way light time 
  
PDU  protocol data unit 
PKTShow Packet Show (telemetry viewing system)  
POSIX API Portable Operating System Interface Application 

Programming Interface 
PTL (JPL) Protocol Technology Lab  
PX CCSDS File Delivery Protocol simulator 
pxisi PX input 
pxisi PX output 
  
RAMS Remote Asynchronous Message Service (protocol) 
RF radio frequency  
RFC Request for Comments 
R/T realtime 
  
S/C spacecraft 
SCLK/SCET spacecraft clock/spacecraft event time 
SCMF Spacecraft Command Message File 
SCPS-TP Spacecraft Communication Protocol Standards–Transport 

Protocol  
SCU-B Spacecraft Control Unit B [there are units A and B] 
SFDU standard formatting data unit 
SM status message 
SoA state of the art 
SPICE/NAIF  Space Planetary/satellite ephemeris and constants, 

Instruments, C Pointing Matrix, Event Info. (Kernels)  / 
Navigation and Ancillary Information Facility 

SPOF (has been changed to Bundle Relay Service (BRS)  
stot simple TDS output tool 
SVN Subversion 
  
TCP transmission control protocol; CL protocol supported by 

ION   
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TCP/IP transmission control protocol/internet protocol 
TDS Telemetry Delivery System?  Fig. 8, P. 15] 
TLM telemetry 
TIS Telemetry Input System 
TRL technology readiness level 
TTC tracking, telemetry, command 
TTL time-to-live (of data segments) 
  
UC University of California 
UCLA University of California Los Angeles  
UK United Kingdom 
UDP user datagram protocol (supported by ION)  
UPA Uplink Processor Assembly 
  
VOCA Voice Operational Communications Assembly 
  
WNAN  Wireless Network After Next 
  
XMTR transmitter 
 


