

JPL Publication 9-2

Disruption Tolerant Network Technology Flight
Validation Report
DINET
Ross M. Jones

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

February 2009

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

© 2009 California Institute of Technology. Government sponsorship acknowledged.

 iii

Table of Contents
1. Executive Summary .. 1
2. Introduction... 2
3. Validation Objectives and Experiment Design... 2

3.1. Validation Objectives.. 2
3.1.1. Terms of Validation ...5
3.1.2. Metric 1 – Path Utilization Rate (U)..7
3.1.3. Metric 2 – Delivery Acceleration Ratio (G) ..7
3.1.4. Metric 3 – ION Node Storage Utilization..7
3.1.5. Metric 4 – Multipath Advantage..7

3.2. Experiment Design.. 8
3.2.1. System Level Design ...8
3.2.2. Flight Software ..15
3.2.3. Ground Software..19
3.2.4. Experiment Operations Center...22

4. Experiment Results ... 36
4.1. Findings... 36

4.1.1. Metric 1 – Path Utilization Rate (U)..36
4.1.2. Metric 2 – Delivery Acceleration Ratio (G) ..36
4.1.3. Metric 3 – ION Node Storage Utilization..36
4.1.4. Metric 4 – Multipath Advantage..37

4.2. Trace Bundles ... 37
4.3. Anomalies ... 37

4.3.1. DTN-Related Investigations ..37
4.3.2. Software Anomalies...40
4.3.3. Hardware Anomalies ...41
4.3.4. Environmental Anomalies ...41
4.3.5. Procedural Anomalies..41

4.4. Significance of Results and Comparison to State of the Art .. 42
4.4.1. Current Deep Space Communications Methodology...42
4.4.2. DTN Compared to Current Military Communications State of the Art...43
4.4.3. Comparison with Terrestrial Internet...44
4.4.4. Comparison with SSTC-UK-DMC Satellite Test ..45
4.4.5. Significance of Results ..45

5. Lessons Learned.. 47
5.1. Information Management.. 47
5.2. Requirement and Time Management.. 48
5.3. Configuration Management and Software .. 49
5.4. Testing... 49
5.5. Team Morale... 51

6. Future Work .. 51
6.1. Work for DINET II ... 51

6.1.1. Implementation of Unacknowledged CFDP Enabling Large File Transfers52
6.1.2. Implementation of Bundle Security Protocol (BSP)..52
6.1.3. Demonstration of Dynamic Contact Graph Management..52
6.1.4. Development of a DTN Bootstrap Function ..52
6.1.5. Inclusion of Additional Nodes in the Experimental Network..52
6.1.6. Development of Automated FDM Switching ..53
6.1.7. Fixing Issues Remaining from DINET I..53
6.1.8. Implementation of Extended Priority System..53

6.2. Work Beyond DINET II ... 53
6.2.1. Native AMS on Spacecraft ..53
6.2.2. Network Time Protocols ..53

 iv

6.2.3. On-Board OWLT Calculation Integration ...53
7. Acknowledgements... 54
8. References... 54
9. Appendix A – Experiment Data.. 55
10. Appendix B – Acronyms .. 61

Tables
Table 1 Technology Readiness Levels and DINET Events... 2
Table 2 DINET Environmental and Resource Envelopes ... 4
Table 3 DTN Protocol Envelope.. 5
Table 4 DINET Experiment Summary ... 9
Table 5 DINET Topology Experiments.. 9
Table 6. Uplink Overhead... 56
Table 7 Network Capacity ... 57
Table 8 Experiment Data Delivered .. 58
Table 9 Multipath Advantage ... 59
Table 10. Storage Utilization .. 60

Figures
Figure 1 DINET Topology.. 8
Figure 2 DINET Topology as Physically Implemented ... 10
Figure 3 Topology Experiment 1.. 11
Figure 4Topology Experiment 2... 12
Figure 5 Topology Experiment 3.. 13
Figure 6 Topology Experiment 4... 14
Figure 7 ION General Processing Flow.. 15
Figure 8 Current CFDP Architecture.. 18
Figure 9 CFDP with Integrated PX and ION.. 19
Figure 10 CFDP Operational Downlink Dataflow ... 20
Figure 11 CFDP Operational Uplink Dataflow .. 21
Figure 12 CFDP Testbed Dataflow... 21
Figure 13 EOC Hardware (red boxes) in the PTL Work Area ... 22
Figure 14 EOC Functional Architecture ... 24
Figure 15 EOC Network Diagram .. 25
Figure 16 EOC Software Architecture - Software Overview ... 26
Figure 17 DINET Physical Network... 27
Figure 18 Publisher / Subscriber Software System... 28
Figure 19 Publisher Control Flow... 29
Figure 20 Subscriber Control Flow.. 29
Figure 21 EOC to Administrative Node ... 30
Figure 22 Administrative Node Functionality ... 30
Figure 23 GUI Functionality... 31
Figure 24 Monitor and Control GUI... 32
Figure 25 Non-Realtime Query GUI .. 33
Figure 26 Element Function and Modules.. 34
Figure 27 Personnel Overview.. 35

 v

Abstract

In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential
elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact
spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed
in close cooperation with the EPOXI project which has responsibility for the spacecraft. During
DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were
automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle
origination, transmission, acquisition, dynamic route computation, congestion control,
prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft
and on the ground, over a period of 27 days. All transmitted bundles were successfully received,
without corruption. All transmitted bundles were successfully received, without corruption. The
DINET experiment demonstrated DTN readiness for operational use in space missions.

 vi

 1

1. Executive Summary
In October and November of 2008, the Jet Propulsion Laboratory under contract to NASA,
installed and tested essential elements (Bundle Protocol [1] and the Licklider Transmission
Protocol [2]) of Disruption Tolerant Networking (DTN) technology on the Deep Impact
spacecraft and on nine other computers at JPL. (Note that the terms disruption-tolerant
networking and delay-tolerant networking are used interchangeably in network communications
research.) This experiment, called Deep Impact Network Experiment (DINET), was performed
in close cooperation with the EPOXI project which has responsibility for the spacecraft. (EPOXI
is a combination of the names for the two extended mission components: the exosolar planet
observations, called Extrasolar Planet Observations and Characterization (Epoch), and the flyby
of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI).) At the time, the
spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During
DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were
automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle
origination, transmission, acquisition, dynamic route computation, congestion control,
prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft
and on the ground, over a period of 27 days. All transmitted bundles were successfully received,
without corruption, despite several transient unanticipated lapses in service at Deep Space
Network (DSN) stations during tracking passes.

DINET can be appreciated through two complementary perspectives. The first is technical
significance. Prior to the experiment, the DINET team defined four validation metrics, each of
which was achieved during the experiment. The technical significance of DINET relies on the
quantitatively defensible and tangible results. In summary, the Bundle and Licklider
Transmission protocol elements of DTN were rigorously proven to work, as expected, in the
disruptive environment of an interplanetary mission.

The second perspective takes a broader, longer view, concentrating on the strategic significance
of DINET. It addresses the broader questions of the importance of the experiment’s
achievements, in both current and future timescales. The experiment’s successful demonstration
of the priority-aware relay aspect of DTN offers significant promise for better utilization of
existing bandwidth and improved end-user satisfaction. A significant strategic result with both
immediate and future consequences is a reduction in the reluctance within the space-flight
operations community to host networking technology with a high (if not complete) degree of
autonomy. Indeed, the EPOXI spacecraft team itself had to be convinced that the DINET
software and operations plan posed no serious threat to the safety of their spacecraft. They later
became advocates of DINET’s inherent safety.

DINET showed the ability of a space network to exchange data between its constituent nodes
with Internet-like automation and the resultant low operations labor costs. As networks grow in
complexity, the time and effort needed to manually schedule and coordinate link activity quickly
becomes unmanageable; DTN allows space networks to scale without such constraints. In
addition, the ability to automatically route information between space vehicles in local proximity
without incurring the potentially long one-way light time delays and Earth-based decision cycles
of human-managed communications offers the possibility of new types of coordinated science

 2

that qualitatively differ from current capabilities. DTN can help enable cooperative, reactive
science functionality for remote spacecraft networks.

2. Introduction
The Deep Impact Network Experiment (DINET) was a technology validation experiment of
JPL’s implementation of Delay-Tolerant Networking (DTN) protocols. The DINET development
produced a version of JPL’s implementation of Delay-Tolerant Networking protocols in flight
and ground software that is now at technology readiness level (TRL) 8 (Table 1). The DINET
software (SW) is of sufficient quality that future flight projects can easily use it at low risk.
DINET was implemented on the Deep Impact spacecraft and was closely coordinated with the
EPOXI project. DINET operations were performed during the EPOXI spacecraft team “stand
down” after Extrasolar Planet Observation and Characterization (EPOCH) operations and before
the start of development for DIXI operations (i.e., during October and November 2008). DINET
developments and operations were on a non-interference basis with EPOXI to the maximum
extent possible. DINET was sponsored by NASA Office of Space Operations / Space
Communications and Navigation (OSO/SCAN) via JPL DSN office Space Networking and
Mission Automation. The total cost of DINET was $1.4M, which included support for the
EPOXI spacecraft team and their contractor Ball Aerospace and Technology Corporation.

Table 1 Technology Readiness Levels and DINET Events

TRL
level

Definition DINET Event

4 Component and/or breadboard validation
in laboratory environment

Achieved via a long period of testing on personal
machines and then in the JPL Protocol Test Lab,
through December of 2005.

5 Component and/or breadboard validation
in relevant environment

Achieved during end-to-end ION traffic in the
tracking, telemetry, command (TTC) test envi-
ronment, using TTC V31.1. April 16.

6 System/subsystem model or prototype
demonstration in a relevant environment
(ground or space)

Achieved at the conclusion of DINET system test
Sept. 26, 2008, the "relevant environment" in this
case being the EPOXI test bed environment.

7 System prototype demonstration in a
space environment

Achieved at the conclusion of DINET operations
November 13, 2008.

8 Actual system completed and "flight
qualified" through test and demonstration
(ground or space)

Achieved at the conclusion of DINET operations
November 13, 2008.

9 Actual system "flight proven" through
successful mission operations

3. Validation Objectives and Experiment Design

3.1. Validation Objectives
Flight validate the key features of the DTN protocols, by measuring DTN performance against
stated metrics:

 3

• Path Utilization Rate

• Delivery Acceleration Ratio

• ION Node Storage Utilization

• Multipath Advantage.

These metrics are described in detail in section 3.1.1.

Compare to performance predictions made prior to flight test. Measure and report on the
following:

• Environment Envelope (Table 2)

• Resource Envelope (Table 2) of the end to end system

• Protocol Envelope (Table 3) used in the experiment, since adjusting these can
affect the results.

Describe mission benefits of using DTN to the degree possible with this mission topology

Compare DTN performance to typical state-of-practice approaches

 4

Table 2 DINET Environmental and Resource Envelopes

EOC = Experiment Operations Center, ION = Interplanetary Overlay Network, SCU-B =
Spacecraft Control Unit B

 5

Table 3 DTN Protocol Envelope

CBHE = compressed bundle header encoding; PTL = (JPL) Protocol Technology Lab; TCP/IP = transmission
control protocol/internet protocol;

3.1.1. Terms of Validation
Let XYZ denote the transmission opportunity from node X to node Y on DINET pass or
configuration Z. The duration of XYZ in seconds, denoted by DXYZ, is the end time of XYZ minus
the start time of XYZ. The data rate of XYZ in bytes per second is denoted by CXYZ. The raw
capacity of XYZ, denoted by KXYZ, is equal to DXYZ * CXYZ. (Note that this is ideal capacity; the
actual capacity of the link will be the ideal capacity reduced by actual signal noise on XYZ.
Moreover, transient outages in transmission—as were experienced during four of the eight
DINET transmission opportunities—necessarily reduce the total capacity of an opportunity.)

DINET operated in two configurations, a and b; the former does not induce data loss while the
latter induces loss by randomly discarding 1/32, or 3.125%, of received Licklider Transmission
Protocol (LTP) segments. The total data return capacity S72a from the EPOXI spacecraft (node
7) to the Earth subnet (node 2) while DINET is in configuration a is ∑K72Z for Z = 1 4. The

 6

total data return capacity S72b from the EPOXI spacecraft (node 7) to the Earth subnet (node 2)
while DINET is in configuration b is ∑K72Z for Z = 5 8.

The total data return capacity SM7a from the two Mars subnets (nodes 3 and 5) to the EPOXI
spacecraft (node 7) while DINET is in configuration a is ∑KM7Z for Z = 1 4. The total data
return capacity SM7b from the two Mars subnets (nodes 3 and 5) to the DI spacecraft (node 7)
while DINET is in configuration b is ∑KM7Z for Z = 5 8.

The EPOXI spacecraft is the bottleneck in the flow of data from the Mars subnets to the Earth
subnet: the total science data return capacity of DINET in configuration a, SM2a, is either the
capacity of the transmission opportunities from the Mars subnets to EPOXI or the capacity of the
transmission opportunities from EPOXI to the Earth subnet, whichever is less. That is,
SM2a = SM7a ┴ S72a and SM2b = SM7b ┴ S72b.

The volume of priority-0 science data that is received at the Earth subnet over the entire course
of DINET while in configuration a is denoted by R0a. Similarly, the volume of priority-1 and
priority-2 science data received at the Earth subnet over the entire course of DINET while in
configuration a is denoted by R1a and R2a. The raw volume of science data received at the Earth
subnet over the entire course of DINET in configuration a, RTa, is the sum of these:
RTa = R0a + R1a + R2a. Similarly, RTb = R0b + R1b + R2b.

The urgency-weighted volume of science data received at the Earth subnet over the entire course
of DINET in configuration a, WTa, is the weighted sum: WTa = R0a + (2 * R1a) + (4 * R2a).
Similarly, WTb = R0b + (2 * R1b) + (4 * R2b).

The reference volume of priority-0 science data received at the Earth subnet while DINET is in
configuration a, denoted by Q0a, is computed as RTa multiplied by the proportion of all image
bundles that were published with priority 0 during this phase of the experiment. (This is the
proportion of RTa that we would expect to be priority-0 data, that is, the expected value of R0a if
there were no reordering of data transmissions in the network due to priority.) Similarly,
Q1a = .60 * RTa and Q2a = .25 * RTa, and the same relationships can be expressed for the
configuration-b phase of the experiment as well.

The urgency-weighted reference volume of science data received at the Earth subnet while
DINET is in configuration a, VTa, is the weighted sum: VTa = (.5 * Q0a) + Q1a + (2.0 * Q2a).
Similarly, VTb = (.5 * Q0b) + Q1b + (2.0 * Q2b).

The size of the Interplanetary Overlay Network (ION) data store at each node X, IX, is a DINET
configuration parameter. The size of the traffic storage allocation AX at each node X is computed
by AX = .6 * IX.

The total unassigned space NXZ at each node X for pass Z was reported by each node at least
once on each day during which there was a tracking pass.

The net path capacity PXYa for any single path from node X to node Y while DINET is in
configuration a is the smallest value of ∑KijZ for Z = 1 4 among all links (i, j) in that path; PXYb
is similarly defined for configuration b.

 7

3.1.2. Metric 1 – Path Utilization Rate (U)
Path utilization rate for DINET in configuration a is given by Ua = RTa / SM2a. It measures the
effectiveness of automatic forwarding, custody transfer, and delay-tolerant retransmission.

Validation criteria:

• Ua > 90%. (DTN uses both high-rate and low-rate links efficiently.)

• Ub > 90%. (DTN remains efficient despite an increase in the rate of data loss.)

3.1.3. Metric 2 – Delivery Acceleration Ratio (G)
The delivery acceleration ratio for configuration a is given by Ga = WTa / VTa. It measures the
effectiveness of the priority system.

Validation criteria:

• Ga > 1.05 (Prioritization accelerates the delivery of urgent data.)

• Gb > 1.1 (The advantage of prioritization increases with the rate of data loss.)

3.1.4. Metric 3 – ION Node Storage Utilization
Retention of a stable margin of unassigned space at each node measures the effectiveness of
congestion control.

Validation criteria:

• The total number of bundles for which custody is refused anywhere in the
network for the reason “depleted storage”, throughout each configuration, is
always zero. (We never run out of storage anywhere.)

• NX7 = NX6 for all values of X. (Storage utilization stabilizes over the course of
network operations.)

3.1.5. Metric 4 – Multipath Advantage
The multipath advantage MXY for traffic from X to Y during DINET operations is computed as
∑PXY for all paths from X to Y, divided by the largest single PXY among all paths from X to Y,
minus 1. Where there is only a single possible path between X and Y, multipath advantage is
zero; where there are multiple possible paths between X and Y with net path capacity greater than
zero, multipath advantage increases with the aggregate of those net path capacities. Multipath
advantage therefore measures the effectiveness of dynamic routing.

Validation criteria:

The multipath advantage for traffic from node 20 to node 8 is greater than 20%.
(Dynamic routing among multiple possible paths increases the total network capacity
from Phobos to Earth.)

 8

3.2. Experiment Design

3.2.1. System Level Design
The basic topology of DINET is shown in Figure 1 (i.e., two surface assets, a relay orbiter, and
Earth). The surface assets are designated Mars and Phobos, and the Deep Impact (DI) spacecraft
fills the role of the relay orbiter.

Figure 1 DINET Topology

Figure 2 shows how this topology was implemented during the experiment. The ION software
with the DTN protocols was resident in each of the eleven circles, i.e. network nodes. All the
nodes, except for the Deep Impact spacecraft [node 7], were physically located in the JPL Deep
Space Operations Team (DSOT) area in building 264 or in the Protocol Test Laboratory (PTL) in
room 238-401.

The 4-week period of DINET operations was divided into two configurations (a and b) of four
tracking passes each. Configuration a had no injection of artificial data loss. During
configuration b, 3.125% of all LTP segments were randomly discarded upon reception at the DI

Earth

Mars

Phobos

Orbiter
Relay

(surface asset) (surface asset)

(DI s/c acts as orbiter)

 9

spacecraft and at each of the three DSOT nodes. On the fourth tracking pass of each segment, the
contact between Phobos and EPOXI was omitted. A brief “cross-link” contact between Phobos
and Mars was scheduled for a time shortly before the 4th tracking pass of each experiment,
providing an alternate path for data from Phobos. Four paths (topology experiments) were
navigated using the setup shown in Figure 2. Table 4 summarizes the two configurations, the
four topology experiments, and their relation to the eight DSN passes. Figures 3 through 6 and
Table 5 present the paths through the network for the topology experiments.

Table 4 DINET Experiment Summary

Table 5 DINET Topology Experiments

Topology
Experiment

Network Path

1 Send images from nodes 12 to node 8 via nodes 6, 3, 7 , 2, 4. Also send images
from nodes 20 to node 8 via nodes 10, 5, 7, 2, 4.

2 Send Load/Go directive loads from node 16 to node 12 via nodes 4, 2, 7, 3, 6.
Also from 16 to 20 via 4, 2, 7, 5, 10

3 Omit a contact between 7 and 5 and repeat experiment 1 & 2, forcing images
from 20 to travel via 10, 6, 3, 7, 2, 4 and forcing directive loads to 20 to travel
via 4, 2, 7, 3, 6, 10.

 10

Figure 2 DINET Topology as Physically Implemented

Send images from nodes 12 to node 8 via nodes 6, 3, 7 (the Deep Impact spacecraft), 2, 4. Also send images from nodes 20 to node 8 via nodes 10, 5, 7 (the
Deep Impact spacecraft), 2, 4. BRS = Bundle Relay Service; LTP = Licklider Transmission Protocol; UDP = user datagram protocol

Loa

Deep Impact DSOT DINET EOC
in PTL

7

3

2

5

4

16

6

10

stot EVR

“Earth

“Mars

“Phobos

Loa

bundle

log
BR
TC

space

image files

image files

LTP/UD

8

12

20

serverclient

serverclient

server
client

Load/Go

Experiment
database

 11

Figure 3 Topology Experiment 1

Send images from nodes 12 to node 8 via nodes 6, 3, 7 (the Deep Impact spacecraft), 2, 4. Also send images from nodes 20 to node 8 via nodes 10, 5, 7 (the
Deep Impact spacecraft), 2, 4.

Deep
Impact

DSOT DINET
EOC in PTL

Loa

7

3

2

5

4

16

6

10

stot EVR

“Earth”

“Mars

“Phobos

Loa

bundle

log
BR
TC

space

image files

image files

LTP/UD

8

12

20

serveclien

serveclien

serveclien

Load/Go

Experiment
database

 12

Figure 4Topology Experiment 2

Send Load/Go directive loads from node 16 to node 12 via nodes 4, 2, 7, 3, 6. Also from 16 to 20 via 4, 2, 7, 5, 10

Loa

Deep DSO DINET EOC
in PTL

7

3

2

5

4

16

6

10

stot EVR

“Earth

“Mars

“Phobos

Loa

bundle

log
BR
TC

space

image

image

LTP/UD

8

12

20

serveclien

serveclien

serveclien

Experiment
database

Load/Go

 13

Figure 5 Topology Experiment 3

Loa

Deep DSOT DINET EOC
in PTL

3

2

5

4

 16

 6

10

sto
t

EVR

“Earth

“Mars

“Phobos

Loa

bundle

log
BR
TC

space

image

image

LTP/UD

8

12

20

serveclien

serveclien

serveclien

Experiment
Database

Load/Go

7

 14

Figure 6 Topology Experiment 4

 15

3.2.2. Flight Software
Most of the objectives of the DINET experiment are addressed by the execution of JPL’s
Interplanetary Overlay Network (ION) implementation of the DTN protocols.

The DTN architecture is much like the architecture of the Internet, except that it is one layer
higher in the familiar International Organization for Standardization (ISO) protocol “stack”. The
DTN analog to the internet protocol (IP), called “bundle protocol” (BP), is designed to function
as an “overlay” network protocol that interconnects “internets” – including both Internet-
structured networks and also data paths that utilize only space communication links as defined by
the Consultative Committee for Space Data Systems (CCSDS) – in much the same way that IP
interconnects “subnets” such as those built on Ethernet, SONET, etc. The DTN analog to
transmission control protocol (TCP) is the Licklider Transmission Protocol (LTP), an automatic
system for the retransmission of BP data lost in transit. The ION implementation of BP/LTP is
designed to work well within the constraints of the spacecraft flight software environment,
emphasizing safety and efficiency. See Figure 7 for an overview of ION operations architecture.

Application

bp_send() bp_receive()

ipnfw

ltpclo ltpcli

traffic database

ltp_send() ltpmeter

<LSO> <LSI>

contact graph

forwarding
queue

xmits,
nodes,
origins

plans,
rules,

groups

routing table

transmission
queue

service data units
(outbound block)

LTP
segments

LTP segments
(inbound block>

delivery
queue

Figure 7 ION General Processing Flow

AMS = Asynchronous Messaging Service (a publish & subscribe protocol that sits on top of ION); LSI = link
service input (tasks); LSO = link service output (tasks); AMS =

A few notes on this main line data flow:

 16

 For simplicity, the data flow depicted here is a “loopback” flow in which a single BP
“node” is shown sending data to itself (a useful configuration for test purposes). In order
to depict typical operations over a network we would need two instances of this node
diagram, such that the <LSO> task of one node is shown sending data to the <LSI> task
of the other and vice versa.

 A BP application or application service (such as Remote AMS) that has access to the
local BP node – for our purposes, the “sender” – invokes the bp_send function to send a
unit of application data to a remote counterpart. The destination of the application data
unit is expressed as a BP endpoint ID (EID). The application data unit is encapsulated in
a bundle and is queued for forwarding.

 The forwarder task identified by the “scheme” portion of the bundle’s destination EID
removes the bundle from the forwarding queue and computes a route to the destination
EID. The first node on the route, to which the local node is able to transmit data directly
via some underlying “convergence layer” (CL) protocol, is termed the “proximate node”
for the computed route. The forwarder appends the bundle to one of the transmission
queues for the CL-protocol-specific interface to the proximate node, termed an outduct.
Each outduct is serviced by some CL-specific output task that communicates with the
proximate node – in this case, the LTP output task ltpclo. (Other CL protocols supported
by ION include TCP and user datagram protocol (UDP).)

 The output task for LTP transmission to the selected proximate node removes the bundle
from the transmission queue and invokes the ltp_send function to append it to a block
that is being assembled for transmission to the proximate node. (Because LTP
acknowledgment traffic is issued on a per-block basis, we can limit the amount of
acknowledgment traffic on the network by aggregating multiple bundles into a single
block rather than transmitting each bundle in its own block.)

 The ltpmeter task for the selected proximate node divides the aggregated block into
multiple segments and enqueues them for transmission by underlying link-layer
transmission software, such as an implementation of the CCSDS Advanced Orbiting
Systems (AOS) protocol.

 Underlying link-layer software at the sending node transmits the segments to its
counterpart at the proximate node (the receiver), where they are used to reassemble the
transmission block.

 The receiving node’s input task for LTP reception extracts the bundles from the
reassembled block and dispatches them. Each bundle whose final destination is some
other node is queued for forwarding, just like bundles created by local applications, while
each bundle whose final destination is the local node is queued for delivery to whatever
application “opens” the BP endpoint identified by the bundle’s final destination endpoint
ID.

 The destination application or application service at the receiving node opens the
appropriate BP endpoint and invokes the bp_receive function to remove the bundle
from the associated delivery queue and extract the original application data unit, which it
can then process.

 17

However, the DTN protocols are at relatively high layers of the communication protocol “stack,”
and they rely on the support of communication software at lower layers to effect, for example,
signal radiation and acquisition. Existing EPOXI operational software provides this support but
is not designed to interact with the ION software, and vice versa.

An additional increment of DINET software, called Deep Impact Adaptation Software (DIAS), is
therefore needed to act as an intermediary between ION and the operational software currently
residing on the spacecraft and in the DI ground data system. The DIAS system enables the
exchange of data between ION modules and DI operational software modules, thereby indirectly
enabling the flow of DINET data, without requiring significant modification of DI flight or
ground software.

The fundamental design decision underlying the DIAS design is simple. To minimize
modification of DI operational software, we merely replace DI’s implementation of the CCSDS
File Delivery Protocol (CFDP) with a CFDP simulator, called “PX”. DI operational software,
both in flight and on the ground, continues to invoke the CFDP protocol data unit (PDU)
transmission and reception functions exactly as it does now, but the PDUs that are transmitted
and received are neither produced nor consumed by CFDP protocol engines. Instead those PDUs
are artificially produced and consumed by the PX system, which simply encapsulates segments
of DTN data in bogus CFDP file data protocol data units (FPDUs). In effect, we “tunnel” DTN
traffic through underlying CFDP.

More specifically:

1. DINET test application data objects (e.g., images) are encapsulated in DTN bundle
protocol (BP) data units for routing through the network. Outbound bundles are
aggregated into blocks to minimize protocol overhead, and the Licklider Transmission
Protocol (LTP) implementation then splits each block into segments for reliable
transmission.

2. The PX system, acting as LTP’s underlying “link service”, encapsulates each LTP
segment in a CFDP file data segment PDU. All such FPDUs have the same transaction
ID, the same file data offset value (zero), and indeed the same values in all header fields
except PDU length, which varies with the sizes of the encapsulated segments.
Impersonating CFDP, the PX system passes these artificial FPDUs to DI operational
software for transmission.

3. DI operational software accepts the PX-generated FPDUs and transmits them in the same
manner that authentic FPDUs are transmitted. When the FPDUs are received by
counterpart DI operational software, they are presented to a receiving PX state machine
in exactly the same way that authentic received FPDUs are presented to the CFDP entity.

4. The receiving PX system extracts the encapsulated LTP segments from the FPDUs and
passes them to LTP.

5. The LTP implementation reconstitutes blocks from the segments and extracts bundles
from the reconstructed blocks. The BP implementation then forwards or delivers the
received bundles.

This procedure is symmetrical: bundles sent both to and from the spacecraft are processed in the
same way. In particular, note that the BP and LTP implementations used on-board the spacecraft

 18

and in all ground computers (both DSOT and PTL) are the exact same code. All instances of
these protocols are identical and interchangeable, except that they must be compiled differently
for the various platforms on which they are executed: VxWorks on the flight computer; Solaris
on the DSOT machines; and Linux on the PTL machines.

Figure 8 depicts the current operational Deep Impact CFDP architecture .

DSN
up CFDPHCD

DSN
down

CMD

TIS,
TDS

CFDP CMD
I/F

TDS
I/F

S
ession M

gr

(fdm)

FDM
GUI

files

PDUsCLTUs

SFDUs

PDUs TC frames

TLM framesfiles

DSOTACEDSNSpacecraft

Req.,
Ind.

cfdp_m
anager

Figure 8 Current CFDP Architecture

HCD = hardware command decoder; pxisi = CCSDS File Delivery Protocol simulator input;
pxiso = (output of same); TDS = Telemetry Delivery System; TIS = Telemetry Delivery System;
TLM = telemetry

Figure 9 depicts the DINET software architecture including both PX and ION.

 19

bundles

DSN
upHCD

DSN
down

CMD

TIS,
TDS

CFDP CMD
I/F

TDS
I/F

(fdm)

FDM
GUI

LTP seg in file data PDU
CLTUs

SFDUs

TC frames

TLM framesfiles

DSOTACEDSNSpacecraft PTL

pxlso

pxlsi

PX

LTP seg in file data PDU

pxlsi

pxlso

PX LTP seg in
file data PDU

LTP seg in
file data PDU

LTP BP

LTP segs

LTPBP

LTP segs

bundles

routing data routing data

RAMS

BP

RAMS

AMS
app.

DINET
GUI

DINET
log

cfdp_m
anager

Figure 9 CFDP with Integrated PX and ION

3.2.3. Ground Software
The goal of the DINET ground software design is reducing cost by minimizing change. The
DSN ground software component remains the same with exception of:

1. Create three new instances of File Delivery Manager (FDM) server that interface with
ION. This interface is identical to the existing CCSDS File Delivery Protocol (CFDP)
interface. These new FDM servers simply forward PDUs between ION layer and the
telemetry/command subsystems by converting from telemetry packets to ION PDUs and
from ION PDUs to command link transmission units (CLTUs). No CFDP uplink or
downlink is performed by these FDM servers.

2. ION software used by the Ground system is identical to the software running on the
EPOXI spacecraft with the exception of some differences in implementation of the DIAS
layer.

3. The command Subsystem communicates with the three new File Delivery Manager
(FDM) servers, one at a time, in addition to the existing FDM/CFDP server. The ACE
(the person who sends commands to the spacecraft) switches the connection between the
Command subsystem and the appropriate FDM server based on a fixed schedule to allow
uplink dataflow.

4. In test environment, similar update is made to forward data between Flight software and
three instances of FDM/ION server. There is no manual switching between uplink proxy
and the three FDM servers as in real operation.

5. A new event processor task is created to forward event verification record (EVR)
telemetry packets from the spacecraft to the Experiment Operation Center (EOC). These
EVRs are used for tracking ION software status aboard EPOXI.

 20

6. ION debug information from the Data Operation Center is captured and periodically
forwarded to EOC through email.

Figure 10 CFDP Operational Downlink Dataflow

 21

Figure 11 CFDP Operational Uplink Dataflow

BVE = Block V Exciter

Figure 12 CFDP Testbed Dataflow

FSW = flight software

 22

3.2.4. Experiment Operations Center
The Experimental Operations Center (EOC) is the critical point where all experiment monitoring
and controlling occurred. It resided in the Protocol Technology Lab (PTL) in JPL’s
telecommunications laboratory facility. Since the PTL was conceived as a testbed area for space
networking, the functional design revolves about projects such as DINET. The lab area includes
moveable racks containing about 50 computers, three large liquid crystal display (LCD) wall-
mounted displays, ample network access, and mission-control voice loop connectivity as
illustrated in Figure 13.

Figure 13 EOC Hardware (red boxes) in the PTL Work Area

Standard PTL hardware consists of Intel-based PCs running Fedora Linux, including DINET.
All DINET computers ran 64-bit Linux except the administrative node, which ran 32-bit Linux
(for plug-in compatibility).

The EOC was constructed around a set of requirements for DINET functionality. These
requirements included:

Functions:
 Host three ION relay nodes and three endpoint nodes and requisite software.

 Provide Experiment Monitoring & Control (EM&C) without interfering with the
operation of ION relay or endpoint nodes.

 23

 Host a network time protocol (NTP) server to synchronize time across all EOC machines
to within 1 second of Greenwich mean time (GMT) time.

Software Interfaces:
 Establish and maintain connectivity with DSOT from RELAY nodes for ION bundle

transactions

 Establish and maintain connectivity with DSOT for receiving ION FSW log message
EVR data from Deep Impact telemetry and other DSOT TCP/IP-relayed status
information.

 Establish and maintain connectivity with DSOT for radiation status and voice
coordination with DI operations using the Voice Operational Communications Assembly
(VOCA)

Data Management:
 Provide data archiving of all experiment data

 Provide access to experiment operations records for on-line non-real-time query and
retrieval

 Provide redundant experiment data archival capabilities to avoid loss of experiment data
in the event of the failure of the primary data archive node.

User Interfaces:
 Host experiment operations display in real time for monitoring and controlling the

experiment (see Figure 14).

 Provide receipt of and display of DSOT data that indicate the link status of the link to DI
and indications when a bundle is radiated.

 24

Figure 14 EOC Functional Architecture

EMC or EM&C = Experiment Monitoring & Control ; L&G = load and go (table); SM = status message

Each EOC machine in the PTL was connected to two EOC local area networks (LANs) – one
private LAN for node management, network storage, and terminal traffic; and another routable
LAN for experiment data and out-of-band experiment diagnostic information. The routable LAN
was also accessible by DSOT machines making outbound client connections to server relay
nodes in the EOC. This was accomplished using a secure authentication-based convergence
layer protocol adapter of ION called Bundle Relay Service (BRS)—a TCP-enabled system
allowing bundle-layer traversal through stateful firewalls such as the one protecting the DSOT
nodes. One additional connection was established outside the bundle layer with the
administrative node by a process running on DSOT extracting DINET EVRs and sending them
to the administrative node via TCP. A Global Positioning System (GPS)-based stratum-1 NTP
server on the experiment LAN kept all nodes time-synched.

The operating systems used were the 64- and 32-bit version of Fedora 9, with no special
modifications beyond DINET software (ION, GUI, publish/subscribe applications). The DINET
applications were developed to meet the project’s top-level requirements, as previously stated.
Their software location is shown in Figure 15, and functional flow is shown in Figures 16 and
17.

 25

Figure 15 EOC Network Diagram

The EOC component of the PTL consisted of three ION-enabled relay nodes (4, 6, 10), three
endpoint nodes (8, 12, 20), and the requisite software. In addition, the EOC contained a separate
Administrative Node (16) running a GUI interface and console windows, central to the display of
sending, receiving, and monitoring realtime data. Data archiving, as well as secondary redundant
data archival of all experiment data and access to the experiment operations records for on-line
non-realtime (NRT) query and retrieval, was also conducted through the Administrative node.

 26

The lab provided for connectivity with DSOT from relay nodes for ION bundle transactions and
for receiving ION FSW log message EVR data from Deep Impact telemetry and other DSOT
TCP/IP-relayed status information. Outbound flight LAN firewall exceptions on specific ports
were requested and put into place well before operations to allow outbound TCP/IP connections
to EOC nodes from DSOT.

Figure 16 EOC Software Architecture - Software Overview

RAMS = Remote Asynchronous Message Service; SPOF = (has been changed to Bundle Release Service (BRS);
UDP =; user datagram protocol

 27

Figure 17 DINET Physical Network

stot = simple TDS output tool

EOC Publish & Subscribe and AMS

EOC Publish and EOC Subscribe tasks communicate through the Asynchronous Messaging
Service (AMS). AMS is a publish & subscribe protocol that sits on top of ION and is part of the
ION package (see Figures 18–20). AMS is a data system communications architecture under
which the modules of mission systems may be designed as if they were to operate in isolation,
each one producing and consuming mission information without explicit awareness of which
other modules are currently operating.

An AMS node does not need to wait for the arrival of any message (such as a reply to the
message it sent) before continuing performance of its functions. AMS might best be
characterized as a messaging “middleware” protocol. As such, it relies on the capabilities of
underlying Transport-layer protocols to accomplish the actual copying of a message from the
memory of the sending node to the memory of the receiving node.

EOC EPOXI
Spacecraft & DSOT

End System Nodes

 28

Figure 18 Publisher / Subscriber Software System

NFS = Network File System

EOC Publish and Subscribe Model:

 AMS uses a topic-based Publish & Subscribe model
– Messages are published to "topics" or named logical channels; or in AMS’s case

“subject numbers”
– Subscribers in a topic-based system will receive all messages published to the

topics (subject number) to which they subscribe
 EOC Publish task on the Mars node will publish files in messages to AMS subject

number 15
 EOC Publish task on the Phobos node will publish files in messages to AMS subject

number 15
 EOS Subscribe on the Earth node will subscribe for the messages with AMS subject

number 15
 AMS will deliver subject number 15 messages from Mars and Phobos nodes EOC

Publish tasks to the Earth node EOC Subscribe task without any further EOC
intervention

 29

Figure 19 Publisher Control Flow

M& C = monitor and control

Figure 20 Subscriber Control Flow

EOC Administrative Node
The Administrative Node is a designated separate computer from the three relay computers and
three endpoint ION node computers in the EOC. It was used to process and display received
Protocol Diagnostic Messages (including messages announcing the arrival of Bundle Status
Reports) as well as data archival and retrieval functions for normal operations. The
Administrative Node provided for EOC displays and user interfaces to operate the DINET
experiment in addition to running a GUI application that enabled the DINET operator to monitor
and control the experiment. It also displayed a dynamic topology chart of the DTN in real time.

 30

Figure 21 EOC to Administrative Node

Figure 22 Administrative Node Functionality

GUI Application and Interface
The EOC bundle network is configured and monitored with the EOC GUI application (Figure
23). The application uses a combination of AJAX, html, Java, and the Netbeans 5.5 IDE to
create a user interface (Figure 24) for visibility and interaction with the DTN. It primarily shows
a realtime view of the topology of all nodes running, and all messages being received at each

 31

node as they are stored in the database. A non-realtime message query GUI (Figure 25) augments
this interface to enable the user to query the database for any log messages received at any time
throughout the current (or any previous) experiment based on any database field.

Figure 23 GUI Functionality

 32

Figure 24 Monitor and Control GUI

 33

Figure 25 Non-Realtime Query GUI

SQL Database
The primary source of data archival used for the experiment was a MySQL database, which was
hosted on the Administrative node. Any bundle status reports or log messages were received by
the Administrative node via TCP/IP, parsed, and entered in the database according to the
database record creation concept shown in Figure 26.

The backup data archival and redundant storage system used Wireshark to monitor and store data
arriving at the Administrative Node, and any Wireshark logs were stored on a separate computer
to guard against catastrophic failure of the Administrative Node or its SQL database.

 34

Figure 26 Element Function and Modules

Personnel
The EOC was staffed by one full-time network engineer to perform system administration and
experiment operation. Four more EOC-specific staff members served as developers and testers
on a part-time basis. This is illustrated in Figure 27.

 35

Figure 27 Personnel Overview

Operations Performance
Operations in the EOC included monitoring of data flow during experiment, data collection and
distribution after experiment passes, time management of ION software aboard EPOXI, and
generation of small data bundles for transfer through the DTN (in addition to automated image
publishing). The EOC software GUI display and data store allowed excellent real-time visibility
into network behavior, allowing rapid response to and analysis of experiment events. This
success can be attributed in part to well-defined requirements guiding the EOC development
team through design, assembly, and test phases. The selection of widely available open-source
tools and support for code development on PTL systems also contributed to success, specifically
under budgetary and temporal constraints.

 36

4. Experiment Results

4.1. Findings

4.1.1. Metric 1 – Path Utilization Rate (U)
Validation criteria:

 Ua > 90%. (DTN uses both high-rate and low-rate links efficiently.)

 Ub > 90%. (DTN remains efficient despite an increase in the rate of data loss.)
Analysis of the DINET experiment log indicates that Ua was 76.2% and Ub was 72.4%.

Note, however, that passes 2 and 8 were underutilized due to insufficiency of offered uplink data
as discussed later, so their path utilization rates do not accurately reflect protocol efficiency.
Additionally, note that about 20% of available uplink capacity was consumed by link service
overhead, mainly telecommand coding. When only passes 1, 3, 4, 5, 6, and 7 are considered and
all non-DTN overhead is subtracted from available transmission capacity, Ua and Ub are 97.4%
and 92.5% respectively. With these provisos, both validation criteria were satisfied.

Note that the increased data loss rate in configuration b was found to correlate to a reduced path
utilization rate as expected.

4.1.2. Metric 2 – Delivery Acceleration Ratio (G)
Validation criteria:

 Ga > 1.05 (Prioritization accelerates the delivery of urgent data.)

 Gb > 1.1 (The advantage of prioritization increases with the rate of data loss.)
Analysis of the DINET experiment log indicates that Ga was 1.10 and Gb was 1.12. Both
validation criteria were satisfied

4.1.3. Metric 3 – ION Node Storage Utilization
Validation criteria:

 The total number of bundles for which custody is refused anywhere in the network for the
reason Depleted Storage, throughout each configuration, is always zero. (We never run
out of storage anywhere.)

 NX7 = NX6 for all values of X. (Storage utilization stabilizes over the course of network
operations.)

Analysis of the DINET experiment log indicates that both validation criteria were satisfied,
except that NX7 was 156,816 bytes less than NX6 for node 10 (only). N10 had remained constant
from passes 4 through pass 6. We suspect that some new functionality requiring additional
storage space—possibly not related to the DTN protocols—was initially exercised on node 10
after pass 6 and prior to pass 7; analysis is continuing.

 37

4.1.4. Metric 4 – Multipath Advantage
Validation criteria:

The multipath advantage for traffic from node 20 to node 8 is greater than 20%.
(Dynamic routing among multiple possible paths increases the total network capacity
from Phobos to Earth.)

The computed multipath advantage for traffic from node 20 to node 8 through the entire DINET
experiment is 27%. Thus, the validation criterion was satisfied. Note, however, that errors in the
implementation of dynamic routing prevented the expression of this advantage in improvements
in delivery acceleration ratio. This metric will be revisited in future DINET experiments.

4.2. Trace Bundles
At least one trace bundle was received by each end node (8, 12, 20) from every other end node,
demonstrating the viability of traffic flow in all directions through the network, including direct
exchange between science end nodes without Earth in the loop.

Fourteen trace bundles were never received, due to power failure, software restart, and/or various
errors in dynamic routing as discussed below.

4.3. Anomalies

4.3.1. DTN-Related Investigations
Apparent image arrival out of priority order in pass 2

October 22, 2008
Bundles queued for transmission are forwarded in strict priority order. Why, then, was the first
image received at the Earth node during pass 2 a priority-0 bundle, followed by priority-1
bundles?

During the third contact of pass 1, the EPOXI node sent all bundles it had received to Earth and
then pended, waiting from another bundle to send. During the first contact of pass 2, the Phobos
node completed transmission of a priority-0 bundle that it had begun transmitting at the end of
the first contact of pass 1. When this transmission completed, the newly received priority-0
bundle was immediately grabbed for transmission to Earth by the EPOXI node, but there was no
contact with Earth at that time, so transmission pended. Meanwhile, the Phobos node proceeded
to send another 11 priority-0 bundles to EPOXI, and then the Mars node sent 7 priority-0 images
and 14 priority-1 images to EPOXI during the second contact. When the third contact of pass 2
began, the EPOXI node completed transmission of the pended priority-0 image and then
proceeded to send its other buffered images, starting with the priority-1 images received from the
Mars node.

Underutilization of link in pass 2

October 22, 2008
Path utilization for pass 2 is sharply lower than for passes 1, 3, and 4. Why?

 38

In short, there was too little data buffered at the Phobos node to fully consume the uplink
opportunity for pass 2.

By the start of pass 2, the Phobos node had received a total of 1,129,974 bytes of image data.
Many other images had been published at the Phobos science end node but had been buffered at
node 10 pending the cross-link opportunity to node 6, which would enable this additional traffic
to take advantage of the long contact from Mars to EPOXI during pass 4 when there would be no
Phobos/EPOXI link. Only two days had elapsed since the end of pass 1, not enough time for
newly published data from node 20 to fill node 5’s buffers for transmission to EPOXI.

Node 5 (Phobos) transmitted 781,764 bytes to EPOXI during pass 1, leaving 411,210 bytes. It
received an additional image of 49,622 bytes during its pass-2 opportunity (the cross-link buffer
from 10 to 6 was fully subscribed by this time), so it transmitted a total of 460,832 bytes to
EPOXI during pass 2, leaving no locally buffered data. This constituted a contact under-
utilization of about 300,000 bytes.

Loss of advantage provided by alternative route (cross-link between nodes 6 and 10)

Throughout data production
What happened to the Phobos images, many of priority 1, that were buffered for transmission on
the cross-link? Why weren’t they transmitted by the Mars node during pass 4 in preference to
the priority-0 Mars images?

This is the result of a software anomaly, an error in the route computation algorithm as exercised
at node 6. During the cross-link contact, node 6 received all of these images and forwarded them
to node 3, but node 3 refused custody: it determined that they could not be forwarded through
EPOXI because its contact with EPOXI was already fully allocated to Mars images of priority-0
and priority-1. The problem is that the “backlog” to consider when making this sort of decision
ought to be the backlog of all bundles of the same priority of the bundle to be routed or higher
priority, rather than all bundles regardless of priority. The priority-1 images from Phobos should
have “jumped the queue” ahead of the priority-0 Mars images, causing routes for those lower-
priority bundles to be recomputed as necessary.

Consequently, these Phobos images remained stranded on node 6, where they eventually were
destroyed due to time-to-live (TTL) expiration.

Bundle expiration on EPOXI

Several times throughout operations
Why did bundles expire while buffered at the EPOXI node?

It was not possible to convey them to the Earth node prior to expiration of their TTL intervals.
Note that all of the expired bundles were of priority 0. All priority-1 bundles received at EPOXI
were forwarded to the Earth node, but downlink contacts to Earth were highly constricted during
passes 2 and 6. Insufficient contact time to clear out the buffers at EPOXI resulted in retention
of the lower-priority bundles for transmission during a future contact, but TTL expired before
that contact occurred.

 39

Normally we would expect contact graph routing (CGR)-based route computation to anticipate
the constrained contact opportunities and simply reject the low-priority bundles when sourced,
due to “no known route”. However, several contact opportunities were abbreviated for various
reasons, and retransmission also consumed some contact time. The result was delayed
forwarding of the low-priority bundles.

For example, a priority-0 bundle of size 39888 was sourced by the Phobos science node at 18:10
on 23 October, between passes 2 and 3. It was eligible for enqueuing on the cross-link from
node 10 to node 6, because the subsequent pass-4 link from EPOXI to Earth would have
delivered it prior to TTL expiration, but it was instead enqueued at node 5 because the cross-link
was already fully subscribed. However, because its priority was low it was not fully transmitted
to EPOXI during the first contact of pass 3; moreover, completion of its transmission session
could not occur during pass 4 because that pass had no Phobos/EPOXI contact. So the last
segments of this bundle arrived at EPOXI only during the first contact of pass 5—early in the
morning of 4 November—by which time the bundle’s 10-day time to live had expired. The
bundle was reassembled from its constituent segments but then immediately destroyed.

Underutilization of link in pass 8

November 13, 2008

Command Modulation Generator (CMG) failure during pass 8 somehow caused the Mars node
to hang, so that bundle flow did not resume even when the CMG was restarted. In an attempt to
get the node running again we inadvertently restarted ION on the node when we really wanted
only to restart the FDM process; this resulted in the loss of all data buffered at node 3 for
transmission to EPOXI. We were able to reload the Mars node with images published at the
Phobos science end node and routed to Mars over a newly created cross-link contact, but this
recovery activity consumed about 1¼ hours of the Mars-EPOXI contact interval; during that
time, no bundles were presented for transmission to EPOXI. This constituted a contact under-
utilization of about 1,125,000 bytes.

Custody refusal at node 5 due to redundant reception

October 27, November 11

Why was bundle custody refused on two occasions for the reason “redundant reception”?

On two occasions, a “bptrace” text bundle sent from node 8 to node 12 via node 7 was refused by
node 5 for the reason “redundant reception” following prior refusal due to “no known route” (as
described in “Aggregate capacity overflow” below). This was due to a bug in custody refusal
that resulted in node 5 believing that it already had taken custody of the bundle.

Unexplained “watch” characters

Throughout operations

What causes watch characters indicating “TTL expiration” to be printed at times when no time-
to-live expirations are noted in statistics reports?

Unknown. This question remains under investigation.

Aggregate capacity overflow

Notably October 22 and November 6

 40

Why can some bundles not be routed properly through the crosslink?

CGR erroneously failed to compute a route to a neighbor connected by a long-duration contact,
because the aggregate capacity of this contact was so large that it overflowed the 32-bit integer in
which it was stored. This caused anomalous routing activity from nodes 8 to 12. Bundles sent
from 8 were routed to 5 by 7 in order to take advantage of a future crosslink between 6-12; these
were always rejected, though some were able to be rerouted to 3 by 7.

This bug is listed as JIRA item DINET-107 and a more robust mechanism for computing the
aggregate capacity of a contact is being developed.

4.3.2. Software Anomalies
Spontaneous statistics reports

Throughout operations

Statistics reports were produced by the DINET nodes running on Linux hosts at times other than
the times of contact initiation and termination. This was due to a race condition in the bpclock
daemon, which has already been corrected.

Unreachability of node 16

October 18, 2008
Bundle status reports produced by the EPOXI node and destined for node 16 were never
transmitted because CGR was unable to compute a route from node 7 to node 16. This problem
remains under investigation.

Backlog calculation must be priority-sensitive

Throughout operations

See “Loss of advantage provided by alternative route” above. A fix for this bug is being
developed.

EVR forwarding connection through Data Control firewall times out and is lost

Several times through operations

The ground software utility that extracts EPOXI’s DINET status messages from EVR packets
and sends them through the Flight LAN firewall to the Experiment Operations Center attempts to
use an open connection to EOC for this purpose. However, the Flight LAN firewall
automatically closes this connection when it has been inactive for an hour, so the first EVR
status message received after an hour of inactivity fails transmission to EOC and is lost.
Fortunately, EVRs could still be retrieved immediately at the Mission Support Area (MSA) using
Packet Show (telemetry viewing system) (PKTShow) and can also be retrieved afterwards by
querying the PKTShow. In the future, the utility needs to reopen the connection to EOC for each
EVR.

Incomplete bundle destruction on custody refusal

See “Custody refusal at node 5 due to redundant reception” above. This bug has already been
corrected.

 41

4.3.3. Hardware Anomalies
CMG overload

October 20, November 3, November 11, November 13

A heavy volume of command data transmission, such as DINET’s Mars/EPOXI and
Phobos/EPOXI contacts, can cause the CMG module at various DSN stations to overheat and
shut down; switching to the backup CMG takes some time, resulting in some loss of contact
opportunity. This problem is not local to a single station, and it remains under investigation.

4.3.4. Environmental Anomalies
Power failure

November 13, 2008

A JPL-wide power failure on November 12 caused all DINET nodes in the EOC to be
terminated. This resulted in the loss of all data enqueued at node 10 for transmission to node 6
via cross-link, but (see “Loss of advantage provided by alternative route” above) this data would
almost certainly have been refused by node 3 anyway. The material effect on the experiment
was minimal.

4.3.5. Procedural Anomalies
Restarting FDM on node 3 restarted DTN as well

November 13, 2008

See “Underutilization of link in pass 8” above. According to the contingency documentation, the
decision was made to restart the FDM server, but inability of readily available procedures or
expertise to restart only the FDM system on node 3 caused a restart of not only the server but
also the local DINET software. This had two unfortunate effects: it resulted in underutilization of
the Mars/EPOXI contact, as described earlier; and it increased the difficulty of diagnosing the
suspension of node operations. Procedures and/or scripts providing this detailed operational
flexibility will be helpful for future DINET experiments.

Slow hand-off between DSN stations in Pass I

October 20, 2008
During the first pass, a scheduled handover from DSS 26 to 45 was performed slower than
expected causing loss of data due to bundle expiration.

Incomplete FDM swapping in DSOT during FSW upload
October 18, 2008
The ACE swapped to the correct FDM during the FSW upload without selecting CFDP as the
data transfer mode; rather it was left in Spacecraft Command Message File (SCMF) mode.
Fortunately, this had no impact on the FSW Upload pass, and this anomaly did not reoccur
during the remainder of operations. Future ground software should have automated switching
between FDMs and also between data transfer modes.

 42

4.4. Significance of Results and Comparison to State of the Art

4.4.1. Current Deep Space Communications Methodology
Data retrieval from a single spacecraft
The normal method of retrieving science and telemetry data from spacecraft is for the spacecraft
team to manually schedule each contact with the DSN, decide which data are to be transmitted
from the spacecraft, and then to send a command sequence built by the sequence team to
command the spacecraft to transmit the selected data to the DSN at the selected time.

If, due to atmospheric conditions or other phenomena, telemetry frames are lost, a human-in-the-
loop process is initiated whereby the scientists and engineers examine the data gaps and decide
what data are important to retransmit; a new set of commands is then generated and sent to the
spacecraft to recover the missing data. In some missions, to facilitate this procedure, thumbnail
images are generated and sent along with the full sized images in the hope that if full size images
are lost or corrupted, the thumbnails will help the scientists to decide whether or not to have
these images retransmitted.

This process is labor intensive, as it involves the spacecraft team, the sequence team and the
science team; and it can take several days to decide what should be retransmitted. Meanwhile,
valuable on-board storage is unavailable since the spacecraft has to retain the images until
confirmation that they have been successfully received on Earth or have been deemed
unnecessary.

In addition, the use of thumbnails which facilitates data management and retransmission
decisions requires additional on-board processing and uses bandwidth that could otherwise be
used for the raw data.

In one current Mars mission, the desire for more downlink time resulted in the lowering of the
horizon mask at the DSN station from 20 degrees to 15 degrees. While the X-band data from 20
degrees above the horizon and up was relatively error-free, the data recovered from 15 degrees to
20 degrees above the horizon was prone to errors, and many manual retransmission requests had
to be generated. The sequence team ended up devising a non-standard method of automating the
development of retransmission command sequences to facilitate the necessary retransmissions.

All of these labor-intensive operations can be eliminated by the use of the DTN suite with the
LTP protocol providing for automatic retransmission of bad telemetry frames. The DTN data-
priority scheme can automate the priorities of data sent on board, with repetitive realtime
engineering telemetry sent on a best-efforts basis, for instance, while science data are always
retransmitted as necessary.

The trade space of manually-commanded retransmission versus automated retransmission
includes the additional bandwidth needed for retransmission of potentially useless data (and the
thumbnail method of providing clues as to what is missing), the manual labor needed to decide
what needs to be retransmitted, and the management of storage and processing power on board
the spacecraft.

Preliminary calculations of the extra bandwidth needed for retransmission are the subject of
show that the small percentage of extra bandwidth needed to retransmit potentially useless

 43

science data (e.g., missing portions of an image showing parts of the sky) is a very small price to
pay for the savings in work effort by the various teams and the benefit of being able to release
storage assets immediately when using the built-in reliability features of LTP.

This percentage is also more than offset if the use of LTP eliminates the need for the generation
and transmission of “thumbnail” pictures of the full size image as is done on the Mars
Reconnaissance Orbiter (MRO).

The error rates on X-band links are relatively small. However when using Ka-band, automatic
retransmission will be much more important since Ka is more susceptible to weather-induced
errors. Depending on weather at the various DSN stations, as much as 20% of the downlinked
data could be lost or corrupted, and the workload to try to manually manage that would be large.
The DTN protocol stack is ideal for automating the management of data flow and will be an
enabling technology for the future widespread use of Ka-band.

Good top-down mission system engineering will be necessary, as the impact of automatic
retransmission and its interaction with prioritization must be carefully considered. For example,
in an encounter mission, bandwidth used for retransmitting portions of older images may have
adverse effects on returning closer-in images unless the newer images are given higher priority.
In the case of a rover with robotic tools, the opposite may be true; complete images of the exact
position of a target of interest are needed before plans on how to deploy drills or other sample
tools can be made, so any retransmission of these images must be at higher priority than other
traffic.

Multimission Data Relay Operations
Currently, data from surface assets (e.g., Mars Exploration Rover (MER) or Phoenix) are sent
from the surface to an orbiter (under the command and control of one spacecraft/science team),
and subsequently relayed back to Earth by the orbiter under the control of another spacecraft
team, which may even be from another space agency (e.g., data relay via Mars Express).

The successful accomplishment of a simple two-hop relay scenario requires twice the manual
work described in the previous one-hop scenario, plus coordination between teams. This method
of operations simply doesn’t scale well; if relay operations are being conducted through multiple
spacecraft owned by multiple teams, the coordination logistics can become unmanageable very
quickly.

With an approach of using standardized DTN techniques (that is to say, the use of a standard set
of protocols per Internet Engineering Task Force (IETF) or CCSDS specifications to insure
interoperability), the coordination problem distills down to communications schedules as defined
by pre-determined orbital geometry and DSN scheduling.

DTN will be an enabling technology for previously impractical applications such as the
automated and reliable relaying of data from sensor networks on the surface of other planets.

4.4.2. DTN Compared to Current Military Communications State of the Art
The use of Internet technology in the military is vital and significant effort has been expended to
make Internet protocols work well over satellite relays. Field commanders rely on satellite links
and networking back to the Pentagon, and laptops are ubiquitous in the field.

 44

The problem with this reliance on use of the Internet is at the edges of the battlefield where
connectivity isn't always continuous. The Internet protocols currently in use can manage loss due
to corruption (using CCSDS Spacecraft Communication Protocol Standards–Transport Protocol
(SCPS-TP) for instance, which is in use in military satellite communications and link
asymmetries, but they cannot handle the frequent disruption of end-to-end link connectivity.

The Defense Advanced Research Projects Administration (DARPA) has had a DTN program in
place for a number of years, and this program is moving rapidly towards fielding DTN
capabilities for these edge networks. The Wireless Network After Next (WNAN) program is
building inexpensive DTN radio nodes that will allow the use of DTN to ensure data get into the
hands of soldiers in the field in highly fluid tactical environments where continuous radio
connectivity to the wider military networks cannot be insured. This program is on a fast-track, as
both the United States Army and the United States Marine Corps are anxious to field DTN and
improve battlefield communications.

4.4.3. Comparison with Terrestrial Internet
The main point of comparison with terrestrial internet technology hinges upon the need for
continuous end-to-end connectivity. With TCP/IP, a complete path through multiple routers must
exist between the two computers for a connection to be established and for the reliable
transmission of data. If, during the data exchange transaction, a link from one router to another
goes down, or if one of the routers becomes too congested with traffic to handle the transaction,
the packets are dropped and the transaction is effectively terminated. Reestablishment of the
transaction must wait until once again there is a continuous end-to-end path available.

This effect and the advantage of DTN are best illustrated by relating a recent experiment by the
University of California Los Angeles (UCLA) Center for Embedded Networked Sensors. A
linear array of seismic sensors were placed in a local mountain range, spaced about 1 km apart,
and connection between each sensor was via 802.11 wireless.

Using TCP/IP, in order to retrieve the data from the farthest sensors, all radio links had to be up
and operating. As may be imagined, this was a spotty proposition; 802.11 links often went down
because of atmospheric effects, trees blowing, etc., and as a result, the data from the farthest
sensors was hard to recover.

UCLA took the DTN protocol and installed it in their sensors, so the data could simply be
relayed from node to node when the links were up, storing the data at each link until the next hop
became available. As a result, all data could be recovered. UCLA subsequently used the DTN-
derived techniques in the MesoAmerican Subduction Experiment, which involves an array of
sensors across Mexico for hundreds of kilometers. [3]

DTN store-and-forward techniques are also being used in a number of other terrestrial
applications, such as the University of California (UC) Berkeley Tier Store project, which uses
DTN to provide Internet services to remote villages in India where there is no connectivity. A
similar effort is in use by the Saami-Net project in Sweden, where DTN is used to bring email
and other services out to the nomadic Saami following their reindeer herds. [4]

In both these cases, the principle is that a portable DTN node on a bus or snowmobile takes all
transaction requests from local users; when the portable device is driven (or ridden) to an area of

 45

regular internet connectivity, the transactions are completed, and the results (such as received
email) are stored in the DTN node to await the return trip to the remote users.

With the increased popularity of wireless applications , it is expected that DTN will play a large
role in the terrestrial internet. To this end, our development of DTN over the last 10 years has
been conducted in conjunction with the Internet Research Task Force (IRTF) , which established
the DTN Research Group. The IRTF is an international team of researchers that has collaborated
on the development and standardization of DTN. While our current use on DINET is tailored
specifically for spacecraft communications, it is completely interoperable with the
Delay/Disruption Tolerant Networking Research Group (Reference Implementation 2) (DTNRG
DTN2) public implementation and follows the same Experimental Request for Comments (RFC)
standard [1], so future use of DTN may extend from terrestrial DTN applications to our space
applications.

4.4.4. Comparison with SSTC-UK-DMC Satellite Test
In September 2008, a test of some features of the DTN Bundle Protocol (BP) was performed by
the NASA Glenn Research Center (GRC) using a United Kingdom satellite, UK-DMC, in low
Earth orbit at an altitude of about 100 miles (160 km). In this experiment, an implementation of
the bundle origination, proactive fragmentation, and transmission procedures of BP was installed
on the UK satellite and was used on two occasions to transfer an image—split into two fragments
Glenn Research Center from the satellite to a DTN node at Surrey, UK, over a convergence-layer
protocol stack based on the specification for the Saratoga file transfer protocol; the Surrey
ground station node automatically forwarded the fragments to a third DTN node at GRC. On one
occasion, the image suffered data corruption in transit. The GRC convergence-layer protocols
were able to detect this corruption but not correct it. On the other occasion, the image was
successfully received at GRC.

In October and November of 2008, the NASA Jet Propulsion Laboratory (JPL) installed and
tested fully conformant implementations of both BP and LTP on EPOXI, a NASA spacecraft in
interplanetary space at a distance of 10–15 million miles (16–24 million kilometers) from Earth,
and on nine other computers at JPL. In this experiment, some 300 images were transmitted from
the JPL nodes to the spacecraft and then automatically forwarded from the spacecraft back to the
JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route
computation, congestion control, prioritization, custody transfer, and automatic retransmission
procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted
bundles were successfully received, without corruption, despite several transient unanticipated
lapses in service at DSN stations during tracking passes.

The GRC UK-DMC test was a valuable initial proof of the concept that DTN bundles may be
constructed on-board a spacecraft and used to transmit data.

JPL's EPOXI test demonstrates that JPL’s comprehensive DTN software suite is ready for
operational use in flight missions.

4.4.5. Significance of Results
The significance of the Deep Impact Network Experiment can be appreciated through two
complementary perspectives. The first focuses on the technical significance, with an emphasis

 46

on the quantitatively defensible and tangible results that can be drawn from the four-week
experiment. It answers the narrow question of what DINET has proved. The second perspective
takes a longer view, concentrating on the strategic significance of DINET. It answers the
broader question of the importance of the experiment’s achievements, in both current and future
timescales.

Technical Significance
DINET proved that Delay-Tolerant Networking can work in deep space. During the four-week
experiment, DTN was successfully demonstrated over a variety of conditions for a ten-node
network topology including the EPOXI spacecraft. The DTN protocols that governed the traffic
management, data dissemination and routing functions of a network were exercised over a
representative topology, with a realistic traffic pattern and characteristic application data.
Software adaptations for EPOXI’s flight and ground systems were developed to allow the
networking protocols to act within an end-to-end information system setting.

It should be noted that the topology modeled a more complex network than today’s standard of
Martian communications with a two-hop maximum. Unlike current Mars practice, network
functions were completely automated. It is true that some planned and unplanned actions by
DINET operations personnel were necessary at times to manage the experiment, but the
network/data management functions themselves did not require intervention.

All validation objectives of the experiment were met, accounting for the appearance of
anomalies. One class of anomaly, the unexpected loss of DSN transmission capability that
occurred on several occasions during the experiment, demonstrated the robustness of the JPL
implementation of DTN. In those situations, the protocols automatically identified the missing
data, and they coordinated and activated selected retransmissions, completely and rapidly
recovering the data while imposing no extra operational burden. In fact, all image data received
through the network were compared at the bit level to the original data injected into the network
and shown to be identical, indicating the total lack of data corruption.

Strategic Significance
DINET raised the technology readiness of DTN to its highest level thus far. It clearly
demonstrated a system in a space environment, and if it were only a prototype, such would
qualify as TRL 7. But a case can be made that DINET went beyond the prototype stage, as the
networking protocols employed were those intended to be used universally. While some needed
improvements were identified during the experiment, the maturity, robust performance, and
adherence to publicly available standards of the DTN software allow it to be used again on
different missions with different topologies. Such a situation argues for TRL 8. While the
managers of future missions may desire an additional cycle of code formalization and
documentation for a higher level of supportability before committing to complete adoption, the
DINET code is available for immediate use in its current form.

The experiment, by chance, uncovered a limitation of the current DSN that has significance for
Internet-like operation of space networking. Historically, the downlink data volume from
scientific space probes has dwarfed the uplink volume, as the tightly packaged command
information has never approached the size of the resultant science measurements. So the DSN
never had to accommodate significant uplink volumes. With DTN, large uplink volumes are a

 47

possibility, and the DINET experiment attempted to send data to the EPOXI spacecraft in such
high volume that the DSN’s CMG system failed several times from possible overheating. Such
an uplink limitation had not previously been noted. It highlights the pre-Internet mindset that
many legacy communication systems have physically manifested and currently operate under.

The experiment’s successful demonstration of the priority-aware relay aspect of DTN offers
significant promise for better network utilization of existing bandwidth and improved end-user
satisfaction.

A significant strategic result with both immediate and future consequences is a reduction in
reluctance of the space flight operations community to host networking technology with a high
(if not complete) degree of autonomy. Indeed, the EPOXI spacecraft team itself had to be
convinced that the DINET software and operations plan posed no serious threat to the safety of
their spacecraft. They later became advocates of DINET’s inherent safety. Some benefits of
DTN were also grasped by them as being desirable for science operations such as the EPOCH
science investigations completed a few months prior to DINET.

DINET showed the ability to of a space network to exchange data between its constituent nodes
with Internet-like automation and the resultant low operations labor costs. As networks grow in
complexity, the time and effort needed to manually schedule and coordinate link activity quickly
becomes unmanageable; DTN allows space networks to scale without such constraints. In
addition, the ability to route information automatically between space vehicles in local proximity
without incurring the potentially long one-way light time delays and Earth-based decision cycles
of human-managed communications offers the possibility of new types of coordinated science
that qualitatively differ from current capabilities. DTN should help enable cooperative, reactive
science functionality for remote spacecraft networks.

5. Lessons Learned
While the development of ION took several years of work by JPL and its partners, the
culmination of this effort in the form of DINET took less than a year. The rapid progression of
development, integration, testing, and execution provided ample experience in quickly readying
a communications protocol for use in the space environment. This experience in turn imparts
numerous lessons on managing future DINET experiments and other small team technology
development experiments.

5.1. Information Management
As unit testing proved successful and matured into system-level testing, information
management became a vital tool to assure that all members of the team were consistent in their
knowledge of testing progress, system components, and terminology. Moreover, consistent and
consistently updated information management frames the basis of other lessons for future
experiments.

From the beginning, a communal information source (particularly a wiki) forms the basis of
proper information management. At the unit test level, those responsible for their system
components should update their related wiki pages with test procedures and test results in general
language. All emails referencing test progress should include links to the related wiki page. It is

 48

crucial that updating the experiment wiki is a common task associated with formal and informal
aspects of the experiment. This provides ongoing context for testing progress. Background
documentation, including theoretical and previous work, should also be cached on related unit, or
special, pages.

As system testing starts, the systems engineers will have a deep understanding of each unit with
the context provided by each unit’s wiki entries. As system testing continues and new
responsibilities form, it is essential to assign individual team members to maintain those
responsibilities. This way, no responsibility is left behind and a consistent voice is supporting
each one. The ensuing understanding can then forge a competent and efficient testing plan with
all unit specialists well-versed in related parts of the system. Administratively, consistent and
properly updated documentation aids in developing coherent reviews and reports to clients.

Otherwise, the lack of proper information management may cause slow downs, halts, failed tests,
and other complications that are difficult to mitigate once they appear. If individuals fail to
update their unit wiki, systems engineers will not necessarily have a clear understanding of how
tests are performing or details associated with that unit leading to inefficient or downright
impossible timelines. If a unit’s wiki page is incomplete or is not clear, test operators and
systems engineers may be unable to successfully run tests that would otherwise be possible,
slowing down the progress of the testing schedule.

While the wiki had existed for DINET since the beginning, it was not fully utilized until system
testing. This forced systems engineers to spend extra time in consulting each unit specialist in a
time-consuming and potentially inconsistent way. Moreover, information between units was
exchanged occasionally through email and weekly meetings. While DINET did not face any
mission-endangering consequences from not having an early, widespread adaptation of the wiki,
it is possible that it would have saved time through unambiguous communication.

In general, information management through a wiki may seem trivially important, leading some
team members to disregard it as a superfluous product of overzealous administrators, but it is a
integral player in maintaining an effective development regiment.

5.2. Requirement and Time Management
Without proper requirement and time management the project cannot continue forward. Once
requirements have been developed and refined they can be assigned to tests that are responsible
for meeting those requirements. By mapping these associations, a critical path of testing will
emerge that takes test dependencies into account. This critical path will provide a logical order
of testing that validates the most important requirements first. This way, in the event of delays in
testing process, superfluous tests can be dropped for a descoped testing regimen.

In order to successfully manage both requirements and time during testing, there are several
simple rules that should be followed. First, the sooner unit tests are developed and the
requirements are mapped, the sooner early system tests can be formulated and run. DINET
benefited from running early system tests to diagnose issues in interfacing various units. While
these issues were being resolved, other unit tests could be completed so that the testing regimen
could continue unhampered. Second, the testing schedule should be constantly updated to reflect
completed and delayed tests. Third, as system testing continues it is important to inspect mapped

 49

requirements to verify that they are still relevant and assigned to the right tests. By properly
maintaining the requirements, none will be missed and the testing results can be more easily
integrated into reviews.

Not following these three rules, particularly through inconsistent updates of the requirement
mapping and timeline, may lead to testing delays and inefficient utilization of testing staff.

5.3. Configuration Management and Software
The practice of configuration management (CM) plays a key role in all testing, and the absence
of effective CM will undoubtedly lead to failed tests and a dramatically slower pace of testing.

There are two key lessons regarding CM learned based on progression of DINET testing; first
the centralization of sources of key files, second the shepherding of all file-updating
responsibilities to as few people as possible. Through the latter portions of the DINET
experiment testing we were able to implement Subversion (SVN) file repository as a method to
centralize the distribution of key files used in testing. Many of the nodes in the network would
undergo an SVN update prior to a test in order to make sure everyone was utilizing the same
software and script versions. This system can be improved by expanding it to all nodes on the
system for all the software used in the experiment. For instance the non-ION software used on
the DSOT nodes for system testing was locally maintained by programmers and operators.
Configuration management was done informally through email, causing occasional
miscommunication when emails had not been sent or wrong emails were read. By using a
software repository system like SVN, testers will know exactly what version files they are using
for each test, assuring uniformity throughout the network.

The process of CM through maintaining a software repository can also be expedited by assigning
people to be responsible for particular files. All updates by anyone on the team would be routed
through the person responsible for that particular file so issues of redundant and multiple
different files being used simultaneously will not happen.

Lastly, the streamlining of the user interface for software plays an integral role in safe and error-
free operation. During system testing, personnel shortages forced the use of untrained operation
at the simulated DSOT nodes. Because the software at the nodes was rather cumbersome, a few
tests were scrubbed due to incorrect execution of number of scripts, which need to be run for the
test. Eventually, an overarching script was developed, which all but stopped the scrubbing of
tests due to the aforementioned operator error. During operations, a simple, scripted alarm clock
was developed by the DINET team to provide warnings for operational events. This intuitive
software kept operators aware during operations and may have avoided human error due to
forgetfulness.

5.4. Testing
For all projects, testing is a trying time during which the project team needs to integrate all the
different units of the project and to quickly respond to anomalies that present themselves.

Above all, information management plays the most important role in system testing. The reality
of running a system test is that several people with limited communication between them, in
different buildings, are trying to simultaneously accomplish different, mutually dependent

 50

objectives through individual efforts—simply put, human errors are inevitable. In order to
minimize the errors, thorough procedures need to be written for each testing station or individual,
and then these procedures must be distributed and read by all testers prior to testing. This is a
responsibility not only for the systems engineer who writes and distributes the documentation,
but also for each tester as well. Moreover, procedures need to be followed at all stations for even
the most informal of tests. After all, procedures that are not followed will result in inconclusive
test results and poor practice during operations. This was particularly noticeable in DINET’s
propagation of the time synchronization file which was sometimes haphazardly done in the
testbed location (containing simulated DSOT and testbed nodes). Numerous tests were scrubbed
due to improper synchronization, causing approximately an hour of delay each time. As testing
progresses and ad hoc procedures are developed, such as calling between stations and verifying
file versions, these procedures should be integrated into documentation to formalize them for
future reference and for debriefs of failed tests.

The development of the testing schedule is just as important as information management in
testing because it sets the pace for the entire project. The DINET experiment had three different
unit testing categories: ground support software (itself divided between software for DSOT and
EOC), ION software, and spacecraft adaptation. In order to streamline testing, unit tests were
done in parallel as much as personnel and testing precondition constraints could allow. This
enabled early unit-unit interface tests to meet our testing philosophy of

 “Test early. Test often.”

This decision proved very successful in rapidly adapting the various units to the DINET system
as a whole. During this period, an overarching schedule was developed for system testing. This
schedule provided reasonable margin for tests to take unforeseen complications into account.
Our system testing was rife with complications: changes in facility, intermittent availability of a
working testbed, damage to critical system hardware due to construction workers not taking
safety precautions, key personnel being on leave, and technical issues that arose from testing.
Despite all these complications, DINET remained on schedule for the bulk of testing due to
conservative scheduling. While DINET operations occurred two weeks later than initially
scheduled, it was safe within the two month operations window given by EPOXI staff.

Several important lessons were learned through various types of tests run on DINET software.
One such lesson we learned was the role of long-duration testing. For most of system testing we
relied on 1.5-hour tests, which were unable to expose some flaws in our code. The longer
overnight tests uncovered a memory leak in the administrative node GUI at the EOC as well as
routing issues in the network. Had we not done long-duration testing prior to the software
freeze, our operations would have produced significantly less data. Another lesson emerged
when we performed off-nominal testing on DINET. While we included some off-nominal
testing early, it was trivial in scale compared to what was scheduled toward the end of system
testing. This second round of off-nominal system testing uncovered many bugs in software
throughout the system requiring a iterative develop-on-the-fly and testing procedure that took
longer than expected.

Prior to operations, the DINET team engaged in an intensive Operational Readiness Test (ORT)
period during which we ran through abridged operations twice as well as engaged in a series of
post-ORT tests. The ORTs provided a very strong exercise for operations as they finalized

 51

operational procedures but also gave the DINET team and other operators experience in dealing
with anomalous events during operation. The second round of testing in the ORT period gave
the DINET team extra time to understand exactly how the network would behave during
operations. By observing this behavior, detecting anomalous network activity was a lot easier
for operations.

5.5. Team Morale
Like any other team activity the upkeep of team morale plays a large role in its performance.
While DINET did not experience any problems with morale, there were several decisions which
helped maintain good performance.

Primarily, a realistic outlook on milestones and requirements potentially saved the project money
and team morale. For example, while approaching our ORTs it became apparent that our pace of
testing would either require multiple shifts for testing and development or else a schedule
revision. After consulting with EPOXI staff, the decision for a delay was made. This choice
saved the team both money and extra time, which might still not have produced the required
progress for an on-time ORT.

Second, jovial attitude among the team through the final portions of testing and operations was
maintained by having an ample supply of pastries and espresso on hand at the EOC. These were
also shared with staff associated with the project in other stations, such as DSOT and the MSA.
This simple addition helped keep spirits and energy up through long and late hours and certainly
boosted performance.

6. Future Work
With the successful completion of the DINET experiment and raising the TRL of DTN to 8, we
have begun to look forward to increase the functionality and the operability of the DTN
protocols through further development and testing. We intend to continue our work in the
DINET II experiment, which will provide several enhancements of the DTN software and will
also demonstrate DTN over a larger and more complex network topology.

6.1. Work for DINET II
The key areas of development and demonstration for DINET II:

• Implementation of unacknowledged CFDP enabling large file transfers

• Implementation of Bundle Security Protocol (BSP)

• Demonstration of dynamic contact graph routing

• Development of a EPOXI bootstrap function

• Inclusion of additional nodes in the experimental network

• Development of automated FDM switching

• Fixing issues remaining from DINET I

 52

• Implementation of extended priority system

6.1.1. Implementation of Unacknowledged CFDP Enabling Large File
Transfers

The DINET I experiment was designed to be quickly adapted to the EPOXI infrastructure, which
precluded the development of a CFDP implementation for DINET. Instead, DINET used
preexisting AMS, which limits bundle size to approximately 64 kb. While this was sufficient to
prove the efficacy of DTN, it did not establish a viable method for transferring uncompressed
science data from spacecraft. For DINET II, CFDP has to be implemented as a part of the DTN
stack. This will allow portability of CFDP across Portable Operating System Interface
Application Programming Interface (POSIX API) supporting platforms and aid in technology
infusion. This effort to adapt CFDP will likely happen at JPL.

6.1.2. Implementation of Bundle Security Protocol (BSP)
In order to expand the application of DTN in the space environment, protocol security must be
developed to provide protection from outside attacks when not using secure links. Moreover, the
inclusion of additional nodes in DINET II testing will require secure communications. To this
end, DINET II development will include Bundle Security Protocol (BSP),* which includes
additional blocks in either a header or trailer to authenticate the sender of the bundle. This will
allow for secured communication across otherwise insecure media.

6.1.3. Demonstration of Dynamic Contact Graph Management
Throughout the DINET operations, the contact graph on the spacecraft was considered a single
point of failure for the mission. We did not have enough time to developed a robust and
operationally safe method to change the _ION initialization file (global.ionrc) during operation
in the case of failure or to allow the establishment of another window for data transfer. During
our final pass of the DINET experiment, changing of the contact graph was done within the
EOC, but it has yet to become a standard practice. Changes will be made during the course of
DINET II that will enable dynamic revision of the contact graph for operations and future DTN
experiments. This will enable a network that is more capable of reacting to disruptions and using
opportunistic contacts.

6.1.4. Development of a DTN Bootstrap Function
In order to provide a safe method of restoring connectivity in the case of a contact graph failure
aboard EPOXI, the EPOXI team in conjunction with DINET will develop a bootstrap function
that creates a short contact with the spacecraft to replace or restore the contact graph.

6.1.5. Inclusion of Additional Nodes in the Experimental Network
Following the success of DINET I, a logical step is to include more nodes in our network to
increase network traffic and devise more experiments to test routing algorithms. We are looking
into using testbeds at other NASA facilities and a computer aboard the International Space
Station (ISS) as potential nodes in addition to all the nodes which participated in DINET I.

* BSP is still a draft IETF standard. It is currently available at http://www.ietf.org/internet-
drafts/draft-irtf-dtnrg-bundle-security-06.txt

 53

6.1.6. Development of Automated FDM Switching
In order to access EPOXI using the ground system software, file data management (FDM)
switching needs to occur. Currently this is operated by DSOT during operations, but we intend to
fully automate this based on the contact graph. Automated FDM switching is vital to realistic
operations in which data seamlessly flow and switching decisions are made without a human in
the loop.

6.1.7. Fixing Issues Remaining from DINET I
There are several bugs that were discovered after the software freeze but before DINET I
operations. While some of these bugs have been fixed or are in the process of being fixed, the
remainder will be fixed early in DINET II testing.

6.1.8. Implementation of Extended Priority System
Throughout the course of DINET I operations and discussions with other DTN partners, it
became clear that it would be logical to increase the number of priority levels that are available
in ION. This will provide greater usability for network clients and make sure that administrative
traffic is able to go through the network without interference from other data.

6.2. Work Beyond DINET II
There are a few additional items not covered in the scope of DINET II that will be addressed in
future development and experiments:

• Native AMS on spacecraft

• Network time protocols

• On-board OWLT calculation integration

6.2.1. Native AMS on Spacecraft
The DINET I experiment utilized the EPOXI spacecraft as an internet router, sending bundles
from one node to another. In a realistic DTN scenario, spacecraft will be data producers and will
require AMS in order to send data to their subscribers. This will require testing to adapt the
current AMS software with EPOXI and possibly other spacecraft SCUs in the future.

6.2.2. Network Time Protocols
Successful networking across a delay tolerant network requires strict regulation of clocks that are
accessed by the ION stack in order to manage bundles and communication during contact
windows. Clock synchronization was done by receiving spacecraft clock/spacecraft event time
(SCLK/SCET) files from the spacecraft and predicting clock drift through calculations. This is
not a viable strategy for realistic DTN applications in a large network. Significant work will be
required to develop robust network time protocols to synchronize clocks throughout a DTN
network.

6.2.3. On-Board OWLT Calculation Integration
Due to the dynamic nature of interplanetary navigation, the global.ionrc as initially set will
become increasingly inaccurate without changes taking the one-way-light-time (OWLT) into

 54

account. By utilizing the Spacecraft Planetary/satellite ephemeris and constants, Instruments, C
Pointing Matrix, Event Info. (Kernels) / Navigation and Ancillary Information Facility
(SPICE/NAIF) toolkit, OWLTs can be automatically calculated, both at ground nodes and on-
board the spacecraft, and integrated into the contact graph to enable efficient use of contact
times.

JPL’s EPOXI test demonstrated full end-to-end use of the DTN software suite on a deep space
mission. As such this test flight validated DTN for use on space missions.

7. Acknowledgements
The work described in this report was performed at the Jet Propulsion Laboratory, California
Institute of Technology under a contract with the National Aeronautics and Space Administration
(NASA). Reference herein to any specific commercial product, process or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the
United States Government, NASA or the Jet Propulsion Laboratory, California Institute of
Technology. DINET was implemented by the following personnel: Rashied Amini, Yan
Brenman, Scott Burleigh, Loren Clare, Micah Clark , Andre Girerd, Son Ho, Nuha Jawad, Ross
Jones, Margaret Lam, Marisol Mercado, Amalaye Oyake, Richard Rieber, Joshua Schoolcraft,
Leigh Torgerson, Shin-Ywan Wang and Jay Wyatt. The following members of the EPOXI
project team were essential to the success of DINET; Steve Wissler, Richard Reiber, Greg
LaBorde, Leticia Montanez and Al Nakata.

The Deep Impact Networking Experiment was sponsored by the Space Communications and
Navigation Office in NASA's Space Operations Mission Directorate. NASA's Science Mission
Directorate and Discovery Program provided experimental access to the EPOXI spacecraft.

The EPOXI mission team provided critical support throughout development and operations. The
following members of the EPOXI project team were essential to the success of DINET; Steve
Wissler, Richard Reiber, Greg LaBorde, Leticia Montanez and Al Nakata.

Finally, Rich Benson provided DSN scheduling support.

8. References
1. K. Scott and S. Burleigh, Bundle Protocol Specification, RFC 5050, Internet Society, Reston,

VA, November 2007.

2. M. Ramadas, S. Burleigh and S. Farrell, Licklider Transmission Protocol―Specification, RFC

5326, Internet Society, Reston, VA, September 2008.

3. R.W. Clayton, P.M. Davis, X. Perez-Campos, “Seismic Structure of the Subducted Cocos

Plate,” American Geophysical Union, abstract #T32A-01, Fall Meeting 2007.

4. A. Doria, “Saami Network Connectivity:Technical Overview of SNC.” Available at

www.cdt.luth.se/babylon/snc; accessed February 11, 2009.

 55

9. Appendix A – Experiment Data
This Appendix contains worksheets summarizing the performance of the DINET delay-tolerant network during its 27 days of operations.

Table 6 presents a detailed analysis of the overhead cost of DTN transmission over command links (uplink). Each layer of the protocol
stack imposes some increment of overhead, typically in the form of protocol data unit “header” data. The table illustrates the calculation of
the total overhead imposed by Bundle Protocol, by LTP, by the “PX” shim that enabled DINET to “tunnel” through the pre-existing support
for CFDP on EPOXI, and by the CCSDS Telecommand link-layer protocol. Note that the total link bandwidth consumed by BP and LTP
headers was at most 1% of available bandwidth, while the total link bandwidth consumed by the Telecommand protocol was on the order of
20%.

Table 7 details the total image transmission capacity of each contact opportunity from the simulated science nodes to the EPOXI spacecraft
and from the spacecraft to the simulated mission operations center. Known periods of outage are noted. The “throttled” values in the table
indicate the data rates to which DTN congestion control limited transmission based on the contact schedule; these rates were often, but not
always, identical to the actual rates at which DSN and spacecraft radio frequency (RF) equipment was operating.

Table 8 details the end-to-end image delivery performance of the network. It indicates the volume of data actually received at EPOXI
during each contact, the volume of data delivered to the simulated mission operations center on each pass, and the residual content of the
data buffers on EPOXI at the end of each pass. Link utilization is computed from these figures in the context of the computed network
capacity values from Table 7. Data volumes received at EPOXI and at “Earth” are shown for each of the three levels of priority supported
by the Bundle Protocol standard. This enables the worksheet additionally to show the computed delivery acceleration ratio on each pass.

Table 9 is a calculation of the nominal multipath advantage provided by network as configured for this experiment, based again on the
capacity figures from Table 7.

Table 10 shows how buffer space from the ION storage pool is allocated to DTN protocol activity. The bundle data storage allocation
grows over time until a condition of peak utilization has been reached, at which point it stabilizes and residual storage margin is left
untouched. As noted in 4.1.3 above, the additional allocation from residual storage at node 10 on pass 7 is an anomaly that is still being
investigated. (Since the ION storage pool is used to support other activities in addition to the exercise of the DTN protocols, it is possible
that this additional allocation is not attributable to DTN.)

 56

Table 6. Uplink Overhead

 57

Table 7 Network Capacity

 58

Table 8 Experiment Data Delivered

 59

Table 9 Multipath Advantage

 60

Table 10. Storage Utilization

 61

10. Appendix B – Acronyms

ACE the person who sends commands to the spacecraft
AMS Asynchronous Messaging Service (a publish & subscribe

protocol that sits on top of ION)
AOS Advanced Orbiting Systems
ASM Asynchronous Messaging Service

BER bit error rate
bi bidirectional
BP bundle protocol
BRS Bundle Relay Service
BSP bundle security protocol
BVE Block V Exciter

CBHE compressed bundle header encoding
CCSDS Consultative Committee for Space Data Systems
CFDP CCSDS File Delivery Protocol
CGR contact graph routing
CL convergence layer
CLTU command link transmission unit
CM Configuration Management
CMD command
CMG Command Modulation Generator
CPU central processing unit

DARPA Defense Advanced Research Projects Administration
DI Deep Impact
DIAS Deep Impact Adaptation Software
DINET Deep Impact Network Experiment
DIXI Deep Impact Extended Investigation
DSN Deep Space Network
DSOT Data System Operations Team
DSS Deep Space Station
DTN Disruption Tolerant Networking

(or Delay tolerant Networking; the terms are used
interchangeably in the research community)

DTNRG DTN2 Delay/Disruption Tolerant Networking Research Group
(Reference Implementation 2)

EID endpoint ID
EOC Experiment Operation Center
EMC, EM&C Experiment Monitoring & Control

 62

EPOCH Extrasolar Planet Observation and Characterization
EPOXI EPOXI is a combination of the names for the two

extended mission components: the exosolar planet
observations, called Extrasolar Planet Observations and
Characterization (EPOCH), and the flyby of comet
Hartley 2, called the Deep Impact Extended Investigation
(DIXI).

EVR event verification record

FDM File Delivery Manager
FPDU CFDP file data protocol data unit
FRR File Received Report
FSW flight software

global.ionrc ION initialization file
GMT Greenwich mean time
GPS Global Positioning System
GRC Glenn Research Center
GUI graphical user interface

HCD hardware command decoder

IETF Internet Engineering Task Force (technical body that

standardizes Internet protocols)
ION (JPL) Interplanetary Overlay Network (software suite on

Deep Impact)
IP internet protocol
ISO International Organization for Standardization
ISS International Space Station

JIRA (bug, issue tracking, and project management system

developed by Atlassian Software Systems)
JPL Jet Propulsion Laboratory

LAN local area networks
LCD liquid crystal display
L&G, L/G load and go (table)
LSI link service input
LSO link service output
LTP Licklider Transmission Protocol

M&C monitor and control
MER Mars Exploration Rover
MILSATCOM Military Satellite Communications
MRO Mars Reconnaissance Orbiter

 63

MSA Mission Support Area

NASA National Aeronautics and Space Administration
NFS Network File System
nonbi nonbidirectional
NRT non-realtime
NTP network time protocol

ORT Operational Readiness Test
OSO/SCAN Office of Space Operations / Space Communications and

Navigation
OWLT one-way light time

PDU protocol data unit
PKTShow Packet Show (telemetry viewing system)
POSIX API Portable Operating System Interface Application

Programming Interface
PTL (JPL) Protocol Technology Lab
PX CCSDS File Delivery Protocol simulator
pxisi PX input
pxisi PX output

RAMS Remote Asynchronous Message Service (protocol)
RF radio frequency
RFC Request for Comments
R/T realtime

S/C spacecraft
SCLK/SCET spacecraft clock/spacecraft event time
SCMF Spacecraft Command Message File
SCPS-TP Spacecraft Communication Protocol Standards–Transport

Protocol
SCU-B Spacecraft Control Unit B [there are units A and B]
SFDU standard formatting data unit
SM status message
SoA state of the art
SPICE/NAIF Space Planetary/satellite ephemeris and constants,

Instruments, C Pointing Matrix, Event Info. (Kernels) /
Navigation and Ancillary Information Facility

SPOF (has been changed to Bundle Relay Service (BRS)
stot simple TDS output tool
SVN Subversion

TCP transmission control protocol; CL protocol supported by

ION

 64

TCP/IP transmission control protocol/internet protocol
TDS Telemetry Delivery System? Fig. 8, P. 15]
TLM telemetry
TIS Telemetry Input System
TRL technology readiness level
TTC tracking, telemetry, command
TTL time-to-live (of data segments)

UC University of California
UCLA University of California Los Angeles
UK United Kingdom
UDP user datagram protocol (supported by ION)
UPA Uplink Processor Assembly

VOCA Voice Operational Communications Assembly

WNAN Wireless Network After Next

XMTR transmitter

